MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xorcomOLD Structured version   Visualization version   GIF version

Theorem xorcomOLD 1507
Description: Obsolete version of xorcom 1506 as of 21-Apr-2024. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
xorcomOLD ((𝜑𝜓) ↔ (𝜓𝜑))

Proof of Theorem xorcomOLD
StepHypRef Expression
1 bicom 221 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
21notbii 319 . 2 (¬ (𝜑𝜓) ↔ ¬ (𝜓𝜑))
3 df-xor 1504 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
4 df-xor 1504 . 2 ((𝜓𝜑) ↔ ¬ (𝜓𝜑))
52, 3, 43bitr4i 302 1 ((𝜑𝜓) ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wxo 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-xor 1504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator