Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xorass | Structured version Visualization version GIF version |
Description: The connector ⊻ is associative. (Contributed by FL, 22-Nov-2010.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Wolf Lammen, 20-Jun-2020.) |
Ref | Expression |
---|---|
xorass | ⊢ (((𝜑 ⊻ 𝜓) ⊻ 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor3 384 | . . 3 ⊢ (¬ (𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ↔ ¬ (𝜓 ⊻ 𝜒))) | |
2 | biass 386 | . . . 4 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) | |
3 | xnor 1508 | . . . . 5 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) | |
4 | 3 | bibi1i 339 | . . . 4 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (¬ (𝜑 ⊻ 𝜓) ↔ 𝜒)) |
5 | xnor 1508 | . . . . 5 ⊢ ((𝜓 ↔ 𝜒) ↔ ¬ (𝜓 ⊻ 𝜒)) | |
6 | 5 | bibi2i 338 | . . . 4 ⊢ ((𝜑 ↔ (𝜓 ↔ 𝜒)) ↔ (𝜑 ↔ ¬ (𝜓 ⊻ 𝜒))) |
7 | 2, 4, 6 | 3bitr3i 301 | . . 3 ⊢ ((¬ (𝜑 ⊻ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ ¬ (𝜓 ⊻ 𝜒))) |
8 | nbbn 385 | . . 3 ⊢ ((¬ (𝜑 ⊻ 𝜓) ↔ 𝜒) ↔ ¬ ((𝜑 ⊻ 𝜓) ↔ 𝜒)) | |
9 | 1, 7, 8 | 3bitr2ri 300 | . 2 ⊢ (¬ ((𝜑 ⊻ 𝜓) ↔ 𝜒) ↔ ¬ (𝜑 ↔ (𝜓 ⊻ 𝜒))) |
10 | df-xor 1507 | . 2 ⊢ (((𝜑 ⊻ 𝜓) ⊻ 𝜒) ↔ ¬ ((𝜑 ⊻ 𝜓) ↔ 𝜒)) | |
11 | df-xor 1507 | . 2 ⊢ ((𝜑 ⊻ (𝜓 ⊻ 𝜒)) ↔ ¬ (𝜑 ↔ (𝜓 ⊻ 𝜒))) | |
12 | 9, 10, 11 | 3bitr4i 303 | 1 ⊢ (((𝜑 ⊻ 𝜓) ⊻ 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ⊻ wxo 1506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-xor 1507 |
This theorem is referenced by: hadass 1598 symdifass 4185 wl-df3xor3 35641 |
Copyright terms: Public domain | W3C validator |