| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xorass | Structured version Visualization version GIF version | ||
| Description: The connector ⊻ is associative. (Contributed by FL, 22-Nov-2010.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Wolf Lammen, 20-Jun-2020.) |
| Ref | Expression |
|---|---|
| xorass | ⊢ (((𝜑 ⊻ 𝜓) ⊻ 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor3 382 | . . 3 ⊢ (¬ (𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ↔ ¬ (𝜓 ⊻ 𝜒))) | |
| 2 | biass 384 | . . . 4 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) | |
| 3 | xnor 1513 | . . . . 5 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) | |
| 4 | 3 | bibi1i 338 | . . . 4 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (¬ (𝜑 ⊻ 𝜓) ↔ 𝜒)) |
| 5 | xnor 1513 | . . . . 5 ⊢ ((𝜓 ↔ 𝜒) ↔ ¬ (𝜓 ⊻ 𝜒)) | |
| 6 | 5 | bibi2i 337 | . . . 4 ⊢ ((𝜑 ↔ (𝜓 ↔ 𝜒)) ↔ (𝜑 ↔ ¬ (𝜓 ⊻ 𝜒))) |
| 7 | 2, 4, 6 | 3bitr3i 301 | . . 3 ⊢ ((¬ (𝜑 ⊻ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ ¬ (𝜓 ⊻ 𝜒))) |
| 8 | nbbn 383 | . . 3 ⊢ ((¬ (𝜑 ⊻ 𝜓) ↔ 𝜒) ↔ ¬ ((𝜑 ⊻ 𝜓) ↔ 𝜒)) | |
| 9 | 1, 7, 8 | 3bitr2ri 300 | . 2 ⊢ (¬ ((𝜑 ⊻ 𝜓) ↔ 𝜒) ↔ ¬ (𝜑 ↔ (𝜓 ⊻ 𝜒))) |
| 10 | df-xor 1512 | . 2 ⊢ (((𝜑 ⊻ 𝜓) ⊻ 𝜒) ↔ ¬ ((𝜑 ⊻ 𝜓) ↔ 𝜒)) | |
| 11 | df-xor 1512 | . 2 ⊢ ((𝜑 ⊻ (𝜓 ⊻ 𝜒)) ↔ ¬ (𝜑 ↔ (𝜓 ⊻ 𝜒))) | |
| 12 | 9, 10, 11 | 3bitr4i 303 | 1 ⊢ (((𝜑 ⊻ 𝜓) ⊻ 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊻ wxo 1511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-xor 1512 |
| This theorem is referenced by: hadass 1597 symdifass 4242 wl-df3xor3 37493 |
| Copyright terms: Public domain | W3C validator |