|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > xorneg1 | Structured version Visualization version GIF version | ||
| Description: The connector ⊻ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 27-Jun-2020.) | 
| Ref | Expression | 
|---|---|
| xorneg1 | ⊢ ((¬ 𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xorcom 1514 | . 2 ⊢ ((¬ 𝜑 ⊻ 𝜓) ↔ (𝜓 ⊻ ¬ 𝜑)) | |
| 2 | xorneg2 1521 | . . 3 ⊢ ((𝜓 ⊻ ¬ 𝜑) ↔ ¬ (𝜓 ⊻ 𝜑)) | |
| 3 | xorcom 1514 | . . 3 ⊢ ((𝜓 ⊻ 𝜑) ↔ (𝜑 ⊻ 𝜓)) | |
| 4 | 2, 3 | xchbinx 334 | . 2 ⊢ ((𝜓 ⊻ ¬ 𝜑) ↔ ¬ (𝜑 ⊻ 𝜓)) | 
| 5 | 1, 4 | bitri 275 | 1 ⊢ ((¬ 𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊻ wxo 1511 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-xor 1512 | 
| This theorem is referenced by: xorneg 1523 | 
| Copyright terms: Public domain | W3C validator |