|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > xorneg2 | Structured version Visualization version GIF version | ||
| Description: The connector ⊻ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 27-Jun-2020.) | 
| Ref | Expression | 
|---|---|
| xorneg2 | ⊢ ((𝜑 ⊻ ¬ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-xor 1511 | . 2 ⊢ ((𝜑 ⊻ ¬ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) | |
| 2 | pm5.18 381 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) | |
| 3 | xnor 1512 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) | |
| 4 | 1, 2, 3 | 3bitr2i 299 | 1 ⊢ ((𝜑 ⊻ ¬ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊻ wxo 1510 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-xor 1511 | 
| This theorem is referenced by: xorneg1 1521 xorneg 1522 | 
| Copyright terms: Public domain | W3C validator |