| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xorneg2 | Structured version Visualization version GIF version | ||
| Description: The connector ⊻ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 27-Jun-2020.) |
| Ref | Expression |
|---|---|
| xorneg2 | ⊢ ((𝜑 ⊻ ¬ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xor 1512 | . 2 ⊢ ((𝜑 ⊻ ¬ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) | |
| 2 | pm5.18 381 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) | |
| 3 | xnor 1513 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) | |
| 4 | 1, 2, 3 | 3bitr2i 299 | 1 ⊢ ((𝜑 ⊻ ¬ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊻ wxo 1511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-xor 1512 |
| This theorem is referenced by: xorneg1 1522 xorneg 1523 |
| Copyright terms: Public domain | W3C validator |