Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xorneg2 | Structured version Visualization version GIF version |
Description: The connector ⊻ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 27-Jun-2020.) |
Ref | Expression |
---|---|
xorneg2 | ⊢ ((𝜑 ⊻ ¬ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1504 | . 2 ⊢ ((𝜑 ⊻ ¬ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) | |
2 | pm5.18 387 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) | |
3 | xnor 1505 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) | |
4 | 1, 2, 3 | 3bitr2i 303 | 1 ⊢ ((𝜑 ⊻ ¬ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ⊻ wxo 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-xor 1504 |
This theorem is referenced by: xorneg1 1515 xorneg 1516 |
Copyright terms: Public domain | W3C validator |