| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchbinx | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinx.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| xchbinx.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| xchbinx | ⊢ (𝜑 ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinx.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinx.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | notbii 320 | . 2 ⊢ (¬ 𝜓 ↔ ¬ 𝜒) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xchbinxr 335 con1bii 356 anor 984 pm4.52 986 pm4.54 988 xordi 1018 xorcom 1514 xorneg1 1522 xorbi12i 1524 norcom 1530 nornot 1531 noran 1532 trunanfal 1582 truxortru 1585 truxorfal 1586 falxorfal 1588 trunortru 1589 trunorfal 1590 falnorfal 1592 nic-mpALT 1672 nic-axALT 1674 sbex 2281 necon3abii 2971 ne3anior 3019 rexab 3657 inssdif0 4327 falseral0 4469 dtruALT 5330 dm0rn0 5871 brprcneu 6816 brprcneuALT 6817 soseq 8099 0nelfz1 13464 pmltpc 25367 cofcutr 27855 nbgrnself 29322 rgrx0ndm 29557 clwwlkneq0 29991 nfrgr2v 30234 frgrncvvdeqlem1 30261 cvbr2 32245 bnj1143 34759 fmlan0 35366 brsset 35865 brtxpsd 35870 dffun10 35890 dfint3 35928 brub 35930 wl-nfeqfb 37512 sbcni 38093 brvdif2 38239 dfssr2 38478 lcvbr2 39003 atlrelat1 39302 dfxor5 43743 df3an2 43745 clsk1independent 44022 spr0nelg 47464 341fppr2 47722 9fppr8 47725 pgrpgt2nabl 48354 lmod1zrnlvec 48483 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |