| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchbinx | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinx.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| xchbinx.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| xchbinx | ⊢ (𝜑 ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinx.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinx.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | notbii 320 | . 2 ⊢ (¬ 𝜓 ↔ ¬ 𝜒) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xchbinxr 335 con1bii 356 anor 984 pm4.52 986 pm4.54 988 xordi 1018 xorcom 1515 xorneg1 1523 xorbi12i 1525 norcom 1531 nornot 1532 noran 1533 trunanfal 1583 truxortru 1586 truxorfal 1587 falxorfal 1589 trunortru 1590 trunorfal 1591 falnorfal 1593 nic-mpALT 1673 nic-axALT 1675 sbex 2285 necon3abii 2975 ne3anior 3023 rexab 3650 inssdif0 4323 falseral0OLD 4465 dtruALT 5330 dm0rn0OLD 5871 brprcneu 6821 brprcneuALT 6822 soseq 8098 0nelfz1 13450 pmltpc 25398 cofcutr 27888 nbgrnself 29358 rgrx0ndm 29593 clwwlkneq0 30030 nfrgr2v 30273 frgrncvvdeqlem1 30300 cvbr2 32284 bnj1143 34874 fmlan0 35507 brsset 36003 brtxpsd 36008 dffun10 36028 dfint3 36068 brub 36070 wl-nfeqfb 37653 sbcni 38224 brvdif2 38372 dfssr2 38664 lcvbr2 39194 atlrelat1 39493 dfxor5 43924 df3an2 43926 clsk1independent 44203 spr0nelg 47638 341fppr2 47896 9fppr8 47899 pgrpgt2nabl 48528 lmod1zrnlvec 48656 aacllem 49962 |
| Copyright terms: Public domain | W3C validator |