| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchbinx | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinx.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| xchbinx.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| xchbinx | ⊢ (𝜑 ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinx.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinx.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | notbii 320 | . 2 ⊢ (¬ 𝜓 ↔ ¬ 𝜒) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xchbinxr 335 con1bii 356 anor 984 pm4.52 986 pm4.54 988 xordi 1018 xorcom 1514 xorneg1 1522 xorbi12i 1524 norcom 1530 nornot 1531 noran 1532 trunanfal 1582 truxortru 1585 truxorfal 1586 falxorfal 1588 trunortru 1589 trunorfal 1590 falnorfal 1592 nic-mpALT 1672 nic-axALT 1674 sbex 2281 necon3abii 2978 ne3anior 3026 rexab 3678 inssdif0 4349 falseral0 4491 dtruALT 5358 dm0rn0 5904 brprcneu 6865 brprcneuALT 6866 soseq 8156 0nelfz1 13558 pmltpc 25401 cofcutr 27875 nbgrnself 29284 rgrx0ndm 29519 clwwlkneq0 29956 nfrgr2v 30199 frgrncvvdeqlem1 30226 cvbr2 32210 bnj1143 34767 fmlan0 35359 brsset 35853 brtxpsd 35858 dffun10 35878 dfint3 35916 brub 35918 wl-nfeqfb 37500 sbcni 38081 brvdif2 38226 dfssr2 38463 lcvbr2 38986 atlrelat1 39285 dfxor5 43738 df3an2 43740 clsk1independent 44017 spr0nelg 47438 341fppr2 47696 9fppr8 47699 pgrpgt2nabl 48289 lmod1zrnlvec 48418 aacllem 49613 |
| Copyright terms: Public domain | W3C validator |