| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchbinx | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinx.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| xchbinx.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| xchbinx | ⊢ (𝜑 ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinx.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinx.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | notbii 320 | . 2 ⊢ (¬ 𝜓 ↔ ¬ 𝜒) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xchbinxr 335 con1bii 356 anor 984 pm4.52 986 pm4.54 988 xordi 1018 xorcom 1514 xorneg1 1522 xorbi12i 1524 norcom 1530 nornot 1531 noran 1532 trunanfal 1582 truxortru 1585 truxorfal 1586 falxorfal 1588 trunortru 1589 trunorfal 1590 falnorfal 1592 nic-mpALT 1672 nic-axALT 1674 sbex 2281 necon3abii 2972 ne3anior 3020 rexab 3669 inssdif0 4340 falseral0 4482 dtruALT 5346 dm0rn0 5891 brprcneu 6851 brprcneuALT 6852 soseq 8141 0nelfz1 13511 pmltpc 25358 cofcutr 27839 nbgrnself 29293 rgrx0ndm 29528 clwwlkneq0 29965 nfrgr2v 30208 frgrncvvdeqlem1 30235 cvbr2 32219 bnj1143 34787 fmlan0 35385 brsset 35884 brtxpsd 35889 dffun10 35909 dfint3 35947 brub 35949 wl-nfeqfb 37531 sbcni 38112 brvdif2 38258 dfssr2 38497 lcvbr2 39022 atlrelat1 39321 dfxor5 43763 df3an2 43765 clsk1independent 44042 spr0nelg 47481 341fppr2 47739 9fppr8 47742 pgrpgt2nabl 48358 lmod1zrnlvec 48487 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |