Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xchbinx | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchbinx.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
xchbinx.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
xchbinx | ⊢ (𝜑 ↔ ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchbinx.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
2 | xchbinx.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | notbii 319 | . 2 ⊢ (¬ 𝜓 ↔ ¬ 𝜒) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xchbinxr 334 con1bii 356 anor 979 pm4.52 981 pm4.54 983 xordi 1013 xorcom 1506 xorneg1 1515 xorbi12i 1517 norcom 1524 nornot 1526 noran 1528 trunanfal 1581 truxortru 1584 truxorfal 1585 falxorfal 1587 trunortru 1588 trunorfal 1590 falnorfal 1593 falnorfalOLD 1594 nic-mpALT 1676 nic-axALT 1678 sbex 2281 necon3abii 2989 ne3anior 3037 rexab 3624 inssdif0 4300 falseral0 4447 dtruALT 5306 dtruALT2 5353 dm0rn0 5823 brprcneu 6747 fvprc 6748 0nelfz1 13204 pmltpc 24519 nbgrnself 27629 rgrx0ndm 27863 clwwlkneq0 28294 nfrgr2v 28537 frgrncvvdeqlem1 28564 cvbr2 30546 bnj1143 32670 fmlan0 33253 soseq 33730 cofcutr 34019 brsset 34118 brtxpsd 34123 dffun10 34143 dfint3 34181 brub 34183 wl-nfeqfb 35622 sbcni 36196 brvdif2 36328 dfssr2 36544 lcvbr2 36963 atlrelat1 37262 dfxor5 41264 df3an2 41266 clsk1independent 41545 spr0nelg 44816 341fppr2 45074 9fppr8 45077 pgrpgt2nabl 45590 lmod1zrnlvec 45723 aacllem 46391 |
Copyright terms: Public domain | W3C validator |