![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xchbinx | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchbinx.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
xchbinx.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
xchbinx | ⊢ (𝜑 ↔ ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchbinx.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
2 | xchbinx.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | notbii 320 | . 2 ⊢ (¬ 𝜓 ↔ ¬ 𝜒) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xchbinxr 335 con1bii 356 anor 980 pm4.52 982 pm4.54 984 xordi 1014 xorcom 1511 xorneg1 1520 xorbi12i 1522 norcom 1529 nornot 1531 noran 1532 trunanfal 1582 truxortru 1585 truxorfal 1586 falxorfal 1588 trunortru 1589 trunorfal 1590 falnorfal 1592 nic-mpALT 1673 nic-axALT 1675 sbex 2276 necon3abii 2986 ne3anior 3035 rexab 3690 inssdif0 4369 falseral0 4519 dtruALT 5386 dm0rn0 5924 brprcneu 6881 brprcneuALT 6882 soseq 8150 0nelfz1 13527 pmltpc 25299 cofcutr 27758 nbgrnself 29050 rgrx0ndm 29284 clwwlkneq0 29716 nfrgr2v 29959 frgrncvvdeqlem1 29986 cvbr2 31970 bnj1143 34266 fmlan0 34847 brsset 35332 brtxpsd 35337 dffun10 35357 dfint3 35395 brub 35397 wl-nfeqfb 36871 sbcni 37445 brvdif2 37596 dfssr2 37835 lcvbr2 38358 atlrelat1 38657 dfxor5 42983 df3an2 42985 clsk1independent 43262 spr0nelg 46605 341fppr2 46863 9fppr8 46866 pgrpgt2nabl 47207 lmod1zrnlvec 47339 aacllem 48012 |
Copyright terms: Public domain | W3C validator |