Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xchbinx | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchbinx.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
xchbinx.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
xchbinx | ⊢ (𝜑 ↔ ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchbinx.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
2 | xchbinx.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | notbii 320 | . 2 ⊢ (¬ 𝜓 ↔ ¬ 𝜒) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xchbinxr 335 con1bii 357 anor 980 pm4.52 982 pm4.54 984 xordi 1014 xorcom 1509 xorneg1 1518 xorbi12i 1520 norcom 1527 nornot 1529 noran 1530 trunanfal 1581 truxortru 1584 truxorfal 1585 falxorfal 1587 trunortru 1588 trunorfal 1589 falnorfal 1592 falnorfalOLD 1593 nic-mpALT 1675 nic-axALT 1677 sbex 2279 necon3abii 2991 ne3anior 3039 rexab 3632 inssdif0 4304 falseral0 4451 dtruALT 5312 dm0rn0 5837 brprcneu 6773 brprcneuALT 6774 0nelfz1 13284 pmltpc 24623 nbgrnself 27735 rgrx0ndm 27969 clwwlkneq0 28402 nfrgr2v 28645 frgrncvvdeqlem1 28672 cvbr2 30654 bnj1143 32779 fmlan0 33362 soseq 33812 cofcutr 34101 brsset 34200 brtxpsd 34205 dffun10 34225 dfint3 34263 brub 34265 wl-nfeqfb 35704 sbcni 36278 brvdif2 36409 dfssr2 36624 lcvbr2 37043 atlrelat1 37342 dfxor5 41382 df3an2 41384 clsk1independent 41663 spr0nelg 44939 341fppr2 45197 9fppr8 45200 pgrpgt2nabl 45713 lmod1zrnlvec 45846 aacllem 46516 |
Copyright terms: Public domain | W3C validator |