![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xchbinx | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchbinx.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
xchbinx.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
xchbinx | ⊢ (𝜑 ↔ ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchbinx.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
2 | xchbinx.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | notbii 320 | . 2 ⊢ (¬ 𝜓 ↔ ¬ 𝜒) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: xchbinxr 335 con1bii 356 anor 984 pm4.52 986 pm4.54 988 xordi 1018 xorcom 1510 xorneg1 1518 xorbi12i 1520 norcom 1526 nornot 1527 noran 1528 trunanfal 1578 truxortru 1581 truxorfal 1582 falxorfal 1584 trunortru 1585 trunorfal 1586 falnorfal 1588 nic-mpALT 1668 nic-axALT 1670 sbex 2279 necon3abii 2984 ne3anior 3033 rexab 3702 inssdif0 4379 falseral0 4521 dtruALT 5393 dm0rn0 5937 brprcneu 6896 brprcneuALT 6897 soseq 8182 0nelfz1 13579 pmltpc 25498 cofcutr 27972 nbgrnself 29390 rgrx0ndm 29625 clwwlkneq0 30057 nfrgr2v 30300 frgrncvvdeqlem1 30327 cvbr2 32311 bnj1143 34782 fmlan0 35375 brsset 35870 brtxpsd 35875 dffun10 35895 dfint3 35933 brub 35935 wl-nfeqfb 37516 sbcni 38097 brvdif2 38243 dfssr2 38480 lcvbr2 39003 atlrelat1 39302 dfxor5 43756 df3an2 43758 clsk1independent 44035 spr0nelg 47400 341fppr2 47658 9fppr8 47661 pgrpgt2nabl 48210 lmod1zrnlvec 48339 aacllem 49031 |
Copyright terms: Public domain | W3C validator |