![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xchbinx | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchbinx.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
xchbinx.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
xchbinx | ⊢ (𝜑 ↔ ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchbinx.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
2 | xchbinx.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | notbii 320 | . 2 ⊢ (¬ 𝜓 ↔ ¬ 𝜒) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: xchbinxr 335 con1bii 356 anor 983 pm4.52 985 pm4.54 987 xordi 1017 xorcom 1511 xorneg1 1519 xorbi12i 1521 norcom 1527 nornot 1528 noran 1529 trunanfal 1579 truxortru 1582 truxorfal 1583 falxorfal 1585 trunortru 1586 trunorfal 1587 falnorfal 1589 nic-mpALT 1670 nic-axALT 1672 sbex 2285 necon3abii 2993 ne3anior 3042 rexab 3716 inssdif0 4397 falseral0 4539 dtruALT 5406 dm0rn0 5949 brprcneu 6910 brprcneuALT 6911 soseq 8200 0nelfz1 13603 pmltpc 25504 cofcutr 27976 nbgrnself 29394 rgrx0ndm 29629 clwwlkneq0 30061 nfrgr2v 30304 frgrncvvdeqlem1 30331 cvbr2 32315 bnj1143 34766 fmlan0 35359 brsset 35853 brtxpsd 35858 dffun10 35878 dfint3 35916 brub 35918 wl-nfeqfb 37490 sbcni 38071 brvdif2 38218 dfssr2 38455 lcvbr2 38978 atlrelat1 39277 dfxor5 43729 df3an2 43731 clsk1independent 44008 spr0nelg 47350 341fppr2 47608 9fppr8 47611 pgrpgt2nabl 48091 lmod1zrnlvec 48223 aacllem 48895 |
Copyright terms: Public domain | W3C validator |