| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchbinx | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinx.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| xchbinx.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| xchbinx | ⊢ (𝜑 ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinx.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinx.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | notbii 320 | . 2 ⊢ (¬ 𝜓 ↔ ¬ 𝜒) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xchbinxr 335 con1bii 356 anor 984 pm4.52 986 pm4.54 988 xordi 1018 xorcom 1514 xorneg1 1522 xorbi12i 1524 norcom 1530 nornot 1531 noran 1532 trunanfal 1582 truxortru 1585 truxorfal 1586 falxorfal 1588 trunortru 1589 trunorfal 1590 falnorfal 1592 nic-mpALT 1672 nic-axALT 1674 sbex 2281 necon3abii 2971 ne3anior 3019 rexab 3666 inssdif0 4337 falseral0 4479 dtruALT 5343 dm0rn0 5888 brprcneu 6848 brprcneuALT 6849 soseq 8138 0nelfz1 13504 pmltpc 25351 cofcutr 27832 nbgrnself 29286 rgrx0ndm 29521 clwwlkneq0 29958 nfrgr2v 30201 frgrncvvdeqlem1 30228 cvbr2 32212 bnj1143 34780 fmlan0 35378 brsset 35877 brtxpsd 35882 dffun10 35902 dfint3 35940 brub 35942 wl-nfeqfb 37524 sbcni 38105 brvdif2 38251 dfssr2 38490 lcvbr2 39015 atlrelat1 39314 dfxor5 43756 df3an2 43758 clsk1independent 44035 spr0nelg 47477 341fppr2 47735 9fppr8 47738 pgrpgt2nabl 48354 lmod1zrnlvec 48483 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |