| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchbinx | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinx.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| xchbinx.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| xchbinx | ⊢ (𝜑 ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinx.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinx.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | notbii 320 | . 2 ⊢ (¬ 𝜓 ↔ ¬ 𝜒) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xchbinxr 335 con1bii 356 anor 984 pm4.52 986 pm4.54 988 xordi 1018 xorcom 1514 xorneg1 1522 xorbi12i 1524 norcom 1530 nornot 1531 noran 1532 trunanfal 1582 truxortru 1585 truxorfal 1586 falxorfal 1588 trunortru 1589 trunorfal 1590 falnorfal 1592 nic-mpALT 1672 nic-axALT 1674 sbex 2281 necon3abii 2971 ne3anior 3019 rexab 3663 inssdif0 4333 falseral0 4475 dtruALT 5338 dm0rn0 5878 brprcneu 6830 brprcneuALT 6831 soseq 8115 0nelfz1 13480 pmltpc 25327 cofcutr 27808 nbgrnself 29262 rgrx0ndm 29497 clwwlkneq0 29931 nfrgr2v 30174 frgrncvvdeqlem1 30201 cvbr2 32185 bnj1143 34753 fmlan0 35351 brsset 35850 brtxpsd 35855 dffun10 35875 dfint3 35913 brub 35915 wl-nfeqfb 37497 sbcni 38078 brvdif2 38224 dfssr2 38463 lcvbr2 38988 atlrelat1 39287 dfxor5 43729 df3an2 43731 clsk1independent 44008 spr0nelg 47450 341fppr2 47708 9fppr8 47711 pgrpgt2nabl 48327 lmod1zrnlvec 48456 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |