| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchbinx | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinx.1 | ⊢ (𝜑 ↔ ¬ 𝜓) |
| xchbinx.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| xchbinx | ⊢ (𝜑 ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinx.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinx.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | notbii 320 | . 2 ⊢ (¬ 𝜓 ↔ ¬ 𝜒) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xchbinxr 335 con1bii 356 anor 984 pm4.52 986 pm4.54 988 xordi 1018 xorcom 1515 xorneg1 1523 xorbi12i 1525 norcom 1531 nornot 1532 noran 1533 trunanfal 1583 truxortru 1586 truxorfal 1587 falxorfal 1589 trunortru 1590 trunorfal 1591 falnorfal 1593 nic-mpALT 1673 nic-axALT 1675 sbex 2283 necon3abii 2974 ne3anior 3022 rexab 3649 inssdif0 4319 falseral0 4461 dtruALT 5321 dm0rn0OLD 5860 brprcneu 6807 brprcneuALT 6808 soseq 8084 0nelfz1 13438 pmltpc 25373 cofcutr 27863 nbgrnself 29332 rgrx0ndm 29567 clwwlkneq0 30001 nfrgr2v 30244 frgrncvvdeqlem1 30271 cvbr2 32255 bnj1143 34794 fmlan0 35427 brsset 35923 brtxpsd 35928 dffun10 35948 dfint3 35986 brub 35988 wl-nfeqfb 37570 sbcni 38151 brvdif2 38297 dfssr2 38536 lcvbr2 39061 atlrelat1 39360 dfxor5 43800 df3an2 43802 clsk1independent 44079 spr0nelg 47507 341fppr2 47765 9fppr8 47768 pgrpgt2nabl 48397 lmod1zrnlvec 48526 aacllem 49833 |
| Copyright terms: Public domain | W3C validator |