NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  abbid Unicode version

Theorem abbid 2467
Description: Equivalent wff's yield equal class abstractions (deduction rule). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
abbid.1  F/
abbid.2
Assertion
Ref Expression
abbid

Proof of Theorem abbid
StepHypRef Expression
1 abbid.1 . . 3  F/
2 abbid.2 . . 3
31, 2alrimi 1765 . 2
4 abbi 2464 . 2
53, 4sylib 188 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176  wal 1540   F/wnf 1544   wceq 1642  cab 2339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346
This theorem is referenced by:  abbidv  2468  rabeqf  2853  sbcbid  3100
  Copyright terms: Public domain W3C validator