New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abbii | Unicode version |
Description: Equivalent wff's yield equal class abstractions (inference rule). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbii.1 |
Ref | Expression |
---|---|
abbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2463 | . 2 | |
2 | abbii.1 | . 2 | |
3 | 1, 2 | mpgbi 1549 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wceq 1642 cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 |
This theorem is referenced by: rabswap 2790 rabbiia 2849 rabab 2876 csb2 3138 cbvcsb 3140 csbid 3143 csbco 3145 cbvreucsf 3200 unrab 3526 inrab 3527 inrab2 3528 difrab 3529 rabun2 3534 dfnul3 3553 rab0 3571 dfif2 3664 tprot 3815 pwpw0 3855 pwsn 3881 pwsnALT 3882 dfuni2 3893 dfint2 3928 int0 3940 cbviun 4003 cbviin 4004 iunrab 4013 iunid 4021 viin 4025 pw0 4160 dfiota2 4340 cbviota 4344 sb8iota 4346 addccom 4406 nncaddccl 4419 preaddccan2lem1 4454 ltfintrilem1 4465 dfevenfin2 4512 dfoddfin2 4513 nnadjoin 4520 tfinnn 4534 nulnnn 4556 phiun 4614 phialllem1 4616 opeq 4619 cbvopab 4630 cbvopab1 4632 cbvopab2 4633 cbvopab1s 4634 cbvopab2v 4636 unopab 4638 dfid3 4768 rabxp 4814 dfrn3 4903 dfdmf 4905 dmopab 4915 dmopabss 4916 dmopab3 4917 dfima4 4952 dfrnf 4962 rnopab 4967 rnopab2 4968 imadmrn 5008 imai 5010 epini 5021 iniseg 5022 iunfopab 5204 dfimafn2 5367 fvco2 5382 abrexco 5463 dfoprab2 5558 cbvoprab2 5568 dmoprab 5574 rnoprab 5576 rnoprab2 5577 fnrnov 5605 mptpreima 5682 dmmpt 5683 rnmpt2 5717 dfnnc3 5885 snec 5987 pmvalg 6010 map0e 6023 mapsn 6026 mucnc 6131 leconnnc 6218 addccan2nclem2 6264 nchoicelem16 6304 |
Copyright terms: Public domain | W3C validator |