New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abbid | GIF version |
Description: Equivalent wff's yield equal class abstractions (deduction rule). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
abbid.1 | ⊢ Ⅎxφ |
abbid.2 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
abbid | ⊢ (φ → {x ∣ ψ} = {x ∣ χ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbid.1 | . . 3 ⊢ Ⅎxφ | |
2 | abbid.2 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | alrimi 1765 | . 2 ⊢ (φ → ∀x(ψ ↔ χ)) |
4 | abbi 2464 | . 2 ⊢ (∀x(ψ ↔ χ) ↔ {x ∣ ψ} = {x ∣ χ}) | |
5 | 3, 4 | sylib 188 | 1 ⊢ (φ → {x ∣ ψ} = {x ∣ χ}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 |
This theorem is referenced by: abbidv 2468 rabeqf 2853 sbcbid 3100 |
Copyright terms: Public domain | W3C validator |