New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax11indalem | Unicode version |
Description: Lemma for ax11inda2 2199 and ax11inda 2200. (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax11indalem.1 |
Ref | Expression |
---|---|
ax11indalem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . . . . . . . 9 | |
2 | 1 | a5i-o 2150 | . . . . . . . 8 |
3 | 2 | a1i 10 | . . . . . . 7 |
4 | biidd 228 | . . . . . . . 8 | |
5 | 4 | dral1-o 2154 | . . . . . . 7 |
6 | 5 | imbi2d 307 | . . . . . . . 8 |
7 | 6 | dral2-o 2181 | . . . . . . 7 |
8 | 3, 5, 7 | 3imtr4d 259 | . . . . . 6 |
9 | 8 | aecoms-o 2152 | . . . . 5 |
10 | 9 | a1d 22 | . . . 4 |
11 | 10 | a1d 22 | . . 3 |
12 | 11 | adantr 451 | . 2 |
13 | simplr 731 | . . . . 5 | |
14 | aecom-o 2151 | . . . . . . . . 9 | |
15 | 14 | con3i 127 | . . . . . . . 8 |
16 | aecom-o 2151 | . . . . . . . . 9 | |
17 | 16 | con3i 127 | . . . . . . . 8 |
18 | ax12o 1934 | . . . . . . . . 9 | |
19 | 18 | imp 418 | . . . . . . . 8 |
20 | 15, 17, 19 | syl2an 463 | . . . . . . 7 |
21 | 20 | imp 418 | . . . . . 6 |
22 | 21 | adantlr 695 | . . . . 5 |
23 | hbnae-o 2179 | . . . . . . 7 | |
24 | hba1-o 2149 | . . . . . . 7 | |
25 | 23, 24 | hban 1828 | . . . . . 6 |
26 | ax-4 2135 | . . . . . . 7 | |
27 | ax11indalem.1 | . . . . . . . 8 | |
28 | 27 | imp 418 | . . . . . . 7 |
29 | 26, 28 | sylan2 460 | . . . . . 6 |
30 | 25, 29 | alimdh 1563 | . . . . 5 |
31 | 13, 22, 30 | syl2anc 642 | . . . 4 |
32 | ax-7 1734 | . . . . . 6 | |
33 | hbnae-o 2179 | . . . . . . . 8 | |
34 | hbnae-o 2179 | . . . . . . . 8 | |
35 | 33, 34 | hban 1828 | . . . . . . 7 |
36 | hbnae-o 2179 | . . . . . . . . . 10 | |
37 | hbnae-o 2179 | . . . . . . . . . 10 | |
38 | 36, 37 | hban 1828 | . . . . . . . . 9 |
39 | 38, 20 | nfdh 1767 | . . . . . . . 8 |
40 | 19.21t 1795 | . . . . . . . 8 | |
41 | 39, 40 | syl 15 | . . . . . . 7 |
42 | 35, 41 | albidh 1590 | . . . . . 6 |
43 | 32, 42 | syl5ib 210 | . . . . 5 |
44 | 43 | ad2antrr 706 | . . . 4 |
45 | 31, 44 | syld 40 | . . 3 |
46 | 45 | exp31 587 | . 2 |
47 | 12, 46 | pm2.61ian 765 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 wal 1540 wnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-4 2135 ax-5o 2136 ax-6o 2137 ax-10o 2139 ax-12o 2142 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: ax11inda2 2199 |
Copyright terms: Public domain | W3C validator |