| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ax11indalem | Unicode version | ||
| Description: Lemma for ax11inda2 2199 and ax11inda 2200. (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax11indalem.1 |
|
| Ref | Expression |
|---|---|
| ax11indalem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 |
. . . . . . . . 9
| |
| 2 | 1 | a5i-o 2150 |
. . . . . . . 8
|
| 3 | 2 | a1i 10 |
. . . . . . 7
|
| 4 | biidd 228 |
. . . . . . . 8
| |
| 5 | 4 | dral1-o 2154 |
. . . . . . 7
|
| 6 | 5 | imbi2d 307 |
. . . . . . . 8
|
| 7 | 6 | dral2-o 2181 |
. . . . . . 7
|
| 8 | 3, 5, 7 | 3imtr4d 259 |
. . . . . 6
|
| 9 | 8 | aecoms-o 2152 |
. . . . 5
|
| 10 | 9 | a1d 22 |
. . . 4
|
| 11 | 10 | a1d 22 |
. . 3
|
| 12 | 11 | adantr 451 |
. 2
|
| 13 | simplr 731 |
. . . . 5
| |
| 14 | aecom-o 2151 |
. . . . . . . . 9
| |
| 15 | 14 | con3i 127 |
. . . . . . . 8
|
| 16 | aecom-o 2151 |
. . . . . . . . 9
| |
| 17 | 16 | con3i 127 |
. . . . . . . 8
|
| 18 | ax12o 1934 |
. . . . . . . . 9
| |
| 19 | 18 | imp 418 |
. . . . . . . 8
|
| 20 | 15, 17, 19 | syl2an 463 |
. . . . . . 7
|
| 21 | 20 | imp 418 |
. . . . . 6
|
| 22 | 21 | adantlr 695 |
. . . . 5
|
| 23 | hbnae-o 2179 |
. . . . . . 7
| |
| 24 | hba1-o 2149 |
. . . . . . 7
| |
| 25 | 23, 24 | hban 1828 |
. . . . . 6
|
| 26 | ax-4 2135 |
. . . . . . 7
| |
| 27 | ax11indalem.1 |
. . . . . . . 8
| |
| 28 | 27 | imp 418 |
. . . . . . 7
|
| 29 | 26, 28 | sylan2 460 |
. . . . . 6
|
| 30 | 25, 29 | alimdh 1563 |
. . . . 5
|
| 31 | 13, 22, 30 | syl2anc 642 |
. . . 4
|
| 32 | ax-7 1734 |
. . . . . 6
| |
| 33 | hbnae-o 2179 |
. . . . . . . 8
| |
| 34 | hbnae-o 2179 |
. . . . . . . 8
| |
| 35 | 33, 34 | hban 1828 |
. . . . . . 7
|
| 36 | hbnae-o 2179 |
. . . . . . . . . 10
| |
| 37 | hbnae-o 2179 |
. . . . . . . . . 10
| |
| 38 | 36, 37 | hban 1828 |
. . . . . . . . 9
|
| 39 | 38, 20 | nfdh 1767 |
. . . . . . . 8
|
| 40 | 19.21t 1795 |
. . . . . . . 8
| |
| 41 | 39, 40 | syl 15 |
. . . . . . 7
|
| 42 | 35, 41 | albidh 1590 |
. . . . . 6
|
| 43 | 32, 42 | syl5ib 210 |
. . . . 5
|
| 44 | 43 | ad2antrr 706 |
. . . 4
|
| 45 | 31, 44 | syld 40 |
. . 3
|
| 46 | 45 | exp31 587 |
. 2
|
| 47 | 12, 46 | pm2.61ian 765 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-4 2135 ax-5o 2136 ax-6o 2137 ax-10o 2139 ax-12o 2142 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: ax11inda2 2199 |
| Copyright terms: Public domain | W3C validator |