Proof of Theorem ax11indalem
Step | Hyp | Ref
| Expression |
1 | | ax-1 6 |
. . . . . . . . 9
⊢ (∀xφ → (x = y →
∀xφ)) |
2 | 1 | a5i-o 2150 |
. . . . . . . 8
⊢ (∀xφ → ∀x(x = y →
∀xφ)) |
3 | 2 | a1i 10 |
. . . . . . 7
⊢ (∀z z = x →
(∀xφ →
∀x(x = y → ∀xφ))) |
4 | | biidd 228 |
. . . . . . . 8
⊢ (∀z z = x →
(φ ↔ φ)) |
5 | 4 | dral1-o 2154 |
. . . . . . 7
⊢ (∀z z = x →
(∀zφ ↔
∀xφ)) |
6 | 5 | imbi2d 307 |
. . . . . . . 8
⊢ (∀z z = x →
((x = y
→ ∀zφ) ↔
(x = y
→ ∀xφ))) |
7 | 6 | dral2-o 2181 |
. . . . . . 7
⊢ (∀z z = x →
(∀x(x = y → ∀zφ) ↔ ∀x(x = y →
∀xφ))) |
8 | 3, 5, 7 | 3imtr4d 259 |
. . . . . 6
⊢ (∀z z = x →
(∀zφ →
∀x(x = y → ∀zφ))) |
9 | 8 | aecoms-o 2152 |
. . . . 5
⊢ (∀x x = z →
(∀zφ →
∀x(x = y → ∀zφ))) |
10 | 9 | a1d 22 |
. . . 4
⊢ (∀x x = z →
(x = y
→ (∀zφ →
∀x(x = y → ∀zφ)))) |
11 | 10 | a1d 22 |
. . 3
⊢ (∀x x = z →
(¬ ∀x x = y → (x =
y → (∀zφ → ∀x(x = y →
∀zφ))))) |
12 | 11 | adantr 451 |
. 2
⊢ ((∀x x = z ∧ ¬ ∀y y = z) →
(¬ ∀x x = y → (x =
y → (∀zφ → ∀x(x = y →
∀zφ))))) |
13 | | simplr 731 |
. . . . 5
⊢ ((((¬ ∀x x = z ∧ ¬ ∀y y = z) ∧ ¬ ∀x x = y) ∧ x = y) → ¬ ∀x x = y) |
14 | | aecom-o 2151 |
. . . . . . . . 9
⊢ (∀z z = x →
∀x
x = z) |
15 | 14 | con3i 127 |
. . . . . . . 8
⊢ (¬ ∀x x = z →
¬ ∀z z = x) |
16 | | aecom-o 2151 |
. . . . . . . . 9
⊢ (∀z z = y →
∀y
y = z) |
17 | 16 | con3i 127 |
. . . . . . . 8
⊢ (¬ ∀y y = z →
¬ ∀z z = y) |
18 | | ax12o 1934 |
. . . . . . . . 9
⊢ (¬ ∀z z = x →
(¬ ∀z z = y → (x =
y → ∀z x = y))) |
19 | 18 | imp 418 |
. . . . . . . 8
⊢ ((¬ ∀z z = x ∧ ¬ ∀z z = y) →
(x = y
→ ∀z x = y)) |
20 | 15, 17, 19 | syl2an 463 |
. . . . . . 7
⊢ ((¬ ∀x x = z ∧ ¬ ∀y y = z) →
(x = y
→ ∀z x = y)) |
21 | 20 | imp 418 |
. . . . . 6
⊢ (((¬ ∀x x = z ∧ ¬ ∀y y = z) ∧ x = y) → ∀z x = y) |
22 | 21 | adantlr 695 |
. . . . 5
⊢ ((((¬ ∀x x = z ∧ ¬ ∀y y = z) ∧ ¬ ∀x x = y) ∧ x = y) → ∀z x = y) |
23 | | hbnae-o 2179 |
. . . . . . 7
⊢ (¬ ∀x x = y →
∀z
¬ ∀x x = y) |
24 | | hba1-o 2149 |
. . . . . . 7
⊢ (∀z x = y →
∀z∀z x = y) |
25 | 23, 24 | hban 1828 |
. . . . . 6
⊢ ((¬ ∀x x = y ∧ ∀z x = y) → ∀z(¬
∀x
x = y
∧ ∀z x = y)) |
26 | | ax-4 2135 |
. . . . . . 7
⊢ (∀z x = y →
x = y) |
27 | | ax11indalem.1 |
. . . . . . . 8
⊢ (¬ ∀x x = y →
(x = y
→ (φ → ∀x(x = y →
φ)))) |
28 | 27 | imp 418 |
. . . . . . 7
⊢ ((¬ ∀x x = y ∧ x = y) → (φ
→ ∀x(x = y → φ))) |
29 | 26, 28 | sylan2 460 |
. . . . . 6
⊢ ((¬ ∀x x = y ∧ ∀z x = y) → (φ
→ ∀x(x = y → φ))) |
30 | 25, 29 | alimdh 1563 |
. . . . 5
⊢ ((¬ ∀x x = y ∧ ∀z x = y) → (∀zφ → ∀z∀x(x = y →
φ))) |
31 | 13, 22, 30 | syl2anc 642 |
. . . 4
⊢ ((((¬ ∀x x = z ∧ ¬ ∀y y = z) ∧ ¬ ∀x x = y) ∧ x = y) → (∀zφ → ∀z∀x(x = y →
φ))) |
32 | | ax-7 1734 |
. . . . . 6
⊢ (∀z∀x(x = y →
φ) → ∀x∀z(x = y →
φ)) |
33 | | hbnae-o 2179 |
. . . . . . . 8
⊢ (¬ ∀x x = z →
∀x
¬ ∀x x = z) |
34 | | hbnae-o 2179 |
. . . . . . . 8
⊢ (¬ ∀y y = z →
∀x
¬ ∀y y = z) |
35 | 33, 34 | hban 1828 |
. . . . . . 7
⊢ ((¬ ∀x x = z ∧ ¬ ∀y y = z) →
∀x(¬ ∀x x = z ∧ ¬ ∀y y = z)) |
36 | | hbnae-o 2179 |
. . . . . . . . . 10
⊢ (¬ ∀x x = z →
∀z
¬ ∀x x = z) |
37 | | hbnae-o 2179 |
. . . . . . . . . 10
⊢ (¬ ∀y y = z →
∀z
¬ ∀y y = z) |
38 | 36, 37 | hban 1828 |
. . . . . . . . 9
⊢ ((¬ ∀x x = z ∧ ¬ ∀y y = z) →
∀z(¬ ∀x x = z ∧ ¬ ∀y y = z)) |
39 | 38, 20 | nfdh 1767 |
. . . . . . . 8
⊢ ((¬ ∀x x = z ∧ ¬ ∀y y = z) →
Ⅎz x = y) |
40 | | 19.21t 1795 |
. . . . . . . 8
⊢ (Ⅎz x = y → (∀z(x = y →
φ) ↔ (x = y →
∀zφ))) |
41 | 39, 40 | syl 15 |
. . . . . . 7
⊢ ((¬ ∀x x = z ∧ ¬ ∀y y = z) →
(∀z(x = y → φ)
↔ (x = y → ∀zφ))) |
42 | 35, 41 | albidh 1590 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ ¬ ∀y y = z) →
(∀x∀z(x = y → φ)
↔ ∀x(x = y → ∀zφ))) |
43 | 32, 42 | syl5ib 210 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ ¬ ∀y y = z) →
(∀z∀x(x = y → φ)
→ ∀x(x = y → ∀zφ))) |
44 | 43 | ad2antrr 706 |
. . . 4
⊢ ((((¬ ∀x x = z ∧ ¬ ∀y y = z) ∧ ¬ ∀x x = y) ∧ x = y) → (∀z∀x(x = y →
φ) → ∀x(x = y →
∀zφ))) |
45 | 31, 44 | syld 40 |
. . 3
⊢ ((((¬ ∀x x = z ∧ ¬ ∀y y = z) ∧ ¬ ∀x x = y) ∧ x = y) → (∀zφ → ∀x(x = y →
∀zφ))) |
46 | 45 | exp31 587 |
. 2
⊢ ((¬ ∀x x = z ∧ ¬ ∀y y = z) →
(¬ ∀x x = y → (x =
y → (∀zφ → ∀x(x = y →
∀zφ))))) |
47 | 12, 46 | pm2.61ian 765 |
1
⊢ (¬ ∀y y = z →
(¬ ∀x x = y → (x =
y → (∀zφ → ∀x(x = y →
∀zφ))))) |