![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > con3i | Unicode version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
Ref | Expression |
---|---|
con3i.a |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
con3i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | con3i.a |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nsyl 113 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem is referenced by: pm2.51 145 pm2.65i 165 pm5.21ni 341 pm2.45 386 pm2.46 387 pm5.14 856 con3th 924 cadan 1392 rb-ax2 1518 rb-ax4 1520 equidOLD 1677 hbn1fw 1705 spOLD 1748 hbnOLD 1777 spimehOLD 1821 cbv3hvOLD 1851 ax12 1935 dvelimv 1939 ax9 1949 sbn 2062 sbcom 2089 ax12from12o 2156 ax67 2165 ax67to6 2167 ax467to6 2171 equidqe 2173 equidq 2175 ax11indalem 2197 euor2 2272 moexex 2273 baroco 2310 necon1bi 2559 eueq3 3011 sbc2or 3054 difrab 3529 abvor0 3567 ifeqor 3699 ifan 3701 nelpri 3754 setswith 4321 eqtfinrelk 4486 dfphi2 4569 mosubopt 4612 phialllem2 4617 imasn 5018 dmsnopss 5067 fvprc 5325 tz6.12-2 5346 ndmfv 5349 nfvres 5352 fvopab4ndm 5390 ressnop0 5436 ndmovass 5618 ndmovdistr 5619 fvmptex 5721 clos1nrel 5886 ncprc 6124 frecxp 6314 |
Copyright terms: Public domain | W3C validator |