| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3imtr4d | Unicode version | ||
| Description: More general version of 3imtr4i 257. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3imtr4d.1 |
|
| 3imtr4d.2 |
|
| 3imtr4d.3 |
|
| Ref | Expression |
|---|---|
| 3imtr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4d.2 |
. 2
| |
| 2 | 3imtr4d.1 |
. . 3
| |
| 3 | 3imtr4d.3 |
. . 3
| |
| 4 | 2, 3 | sylibrd 225 |
. 2
|
| 5 | 1, 4 | sylbid 206 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: ax11indalem 2197 ax11inda2ALT 2198 leltfintr 4459 ltfintr 4460 ltfintri 4467 ltlefin 4469 tfinltfinlem1 4501 vfinspsslem1 4551 pw1fnf1o 5856 enprmaplem3 6079 nchoicelem9 6298 |
| Copyright terms: Public domain | W3C validator |