| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > biantrurd | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) | 
| Ref | Expression | 
|---|---|
| biantrud.1 | 
 | 
| Ref | Expression | 
|---|---|
| biantrurd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biantrud.1 | 
. 2
 | |
| 2 | ibar 490 | 
. 2
 | |
| 3 | 1, 2 | syl 15 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: 3anibar 1123 n0moeu 3563 opkelcokg 4262 opkelimagekg 4272 reiota2 4369 opbrop 4842 funcnv3 5158 fnssresb 5196 dff1o5 5296 dffo3 5423 fconst4 5459 eloprabga 5579 nenpw1pwlem2 6086 | 
| Copyright terms: Public domain | W3C validator |