New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biantrurd | Unicode version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
biantrud.1 |
Ref | Expression |
---|---|
biantrurd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 | |
2 | ibar 490 | . 2 | |
3 | 1, 2 | syl 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: 3anibar 1123 n0moeu 3562 opkelcokg 4261 opkelimagekg 4271 reiota2 4368 opbrop 4841 funcnv3 5157 fnssresb 5195 dff1o5 5295 dffo3 5422 fconst4 5458 eloprabga 5578 nenpw1pwlem2 6085 |
Copyright terms: Public domain | W3C validator |