NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  biantrurd Unicode version

Theorem biantrurd 494
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypothesis
Ref Expression
biantrud.1
Assertion
Ref Expression
biantrurd

Proof of Theorem biantrurd
StepHypRef Expression
1 biantrud.1 . 2
2 ibar 490 . 2
31, 2syl 15 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  3anibar  1123  n0moeu  3563  opkelcokg  4262  opkelimagekg  4272  reiota2  4369  opbrop  4842  funcnv3  5158  fnssresb  5196  dff1o5  5296  dffo3  5423  fconst4  5459  eloprabga  5579  nenpw1pwlem2  6086
  Copyright terms: Public domain W3C validator