New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biantrurd | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
biantrud.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
biantrurd | ⊢ (φ → (χ ↔ (ψ ∧ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 ⊢ (φ → ψ) | |
2 | ibar 490 | . 2 ⊢ (ψ → (χ ↔ (ψ ∧ χ))) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → (χ ↔ (ψ ∧ χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: 3anibar 1123 n0moeu 3563 opkelcokg 4262 opkelimagekg 4272 reiota2 4369 opbrop 4842 funcnv3 5158 fnssresb 5196 dff1o5 5296 dffo3 5423 fconst4 5459 eloprabga 5579 nenpw1pwlem2 6086 |
Copyright terms: Public domain | W3C validator |