| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > biantrurd | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (φ → ψ) |
| Ref | Expression |
|---|---|
| biantrurd | ⊢ (φ → (χ ↔ (ψ ∧ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (φ → ψ) | |
| 2 | ibar 490 | . 2 ⊢ (ψ → (χ ↔ (ψ ∧ χ))) | |
| 3 | 1, 2 | syl 15 | 1 ⊢ (φ → (χ ↔ (ψ ∧ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: 3anibar 1123 n0moeu 3563 opkelcokg 4262 opkelimagekg 4272 reiota2 4369 opbrop 4842 funcnv3 5158 fnssresb 5196 dff1o5 5296 dffo3 5423 fconst4 5459 eloprabga 5579 nenpw1pwlem2 6086 |
| Copyright terms: Public domain | W3C validator |