NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reiota2 Unicode version

Theorem reiota2 4368
Description: A condition allowing us to represent "the unique element in such that " with a class expression . (Contributed by Scott Fenton, 7-Jan-2018.)
Hypothesis
Ref Expression
reiota2.1
Assertion
Ref Expression
reiota2
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem reiota2
StepHypRef Expression
1 simpl 443 . . 3
21biantrurd 494 . 2
3 df-reu 2621 . . 3
4 eleq1 2413 . . . . 5
5 reiota2.1 . . . . 5
64, 5anbi12d 691 . . . 4
76iota2 4367 . . 3
83, 7sylan2b 461 . 2
92, 8bitrd 244 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   wceq 1642   wcel 1710  weu 2204  wreu 2616  cio 4337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ral 2619  df-rex 2620  df-reu 2621  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-un 3214  df-sn 3741  df-pr 3742  df-uni 3892  df-iota 4339
This theorem is referenced by:  ncfinprop  4474  tfinprop  4489  eqtc  6161
  Copyright terms: Public domain W3C validator