New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ceqsal | Unicode version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
ceqsal.1 | |
ceqsal.2 | |
ceqsal.3 |
Ref | Expression |
---|---|
ceqsal |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsal.2 | . 2 | |
2 | ceqsal.1 | . . 3 | |
3 | ceqsal.3 | . . 3 | |
4 | 2, 3 | ceqsalg 2884 | . 2 |
5 | 1, 4 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wal 1540 wnf 1544 wceq 1642 wcel 1710 cvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: ceqsalv 2886 |
Copyright terms: Public domain | W3C validator |