NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ceqsal Unicode version

Theorem ceqsal 2885
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
ceqsal.1  F/
ceqsal.2
ceqsal.3
Assertion
Ref Expression
ceqsal
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem ceqsal
StepHypRef Expression
1 ceqsal.2 . 2
2 ceqsal.1 . . 3  F/
3 ceqsal.3 . . 3
42, 3ceqsalg 2884 . 2
51, 4ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176  wal 1540   F/wnf 1544   wceq 1642   wcel 1710  cvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-v 2862
This theorem is referenced by:  ceqsalv  2886
  Copyright terms: Public domain W3C validator