| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ceqsal | GIF version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| ceqsal.1 | ⊢ Ⅎxψ |
| ceqsal.2 | ⊢ A ∈ V |
| ceqsal.3 | ⊢ (x = A → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| ceqsal | ⊢ (∀x(x = A → φ) ↔ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsal.2 | . 2 ⊢ A ∈ V | |
| 2 | ceqsal.1 | . . 3 ⊢ Ⅎxψ | |
| 3 | ceqsal.3 | . . 3 ⊢ (x = A → (φ ↔ ψ)) | |
| 4 | 2, 3 | ceqsalg 2884 | . 2 ⊢ (A ∈ V → (∀x(x = A → φ) ↔ ψ)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (∀x(x = A → φ) ↔ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
| This theorem is referenced by: ceqsalv 2886 |
| Copyright terms: Public domain | W3C validator |