NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbexg Unicode version

Theorem csbexg 3147
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbexg

Proof of Theorem csbexg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-csb 3138 . 2  [.  ].
2 abid2 2471 . . . . . . 7
3 elex 2868 . . . . . . 7
42, 3syl5eqel 2437 . . . . . 6
54alimi 1559 . . . . 5
6 spsbc 3059 . . . . 5  [.  ].
75, 6syl5 28 . . . 4  [.  ].
87imp 418 . . 3  [.  ].
9 nfcv 2490 . . . . 5  F/_
109sbcabel 3124 . . . 4  [.  ].  [.  ].
1110adantr 451 . . 3  [.  ].  [.  ].
128, 11mpbid 201 . 2 
[.  ].
131, 12syl5eqel 2437 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wal 1540   wcel 1710  cab 2339  cvv 2860   [.wsbc 3047  csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138
This theorem is referenced by:  csbex  3148
  Copyright terms: Public domain W3C validator