New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbexg | GIF version |
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbexg | ⊢ ((A ∈ V ∧ ∀x B ∈ W) → [A / x]B ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3138 | . 2 ⊢ [A / x]B = {y ∣ [̣A / x]̣y ∈ B} | |
2 | abid2 2471 | . . . . . . 7 ⊢ {y ∣ y ∈ B} = B | |
3 | elex 2868 | . . . . . . 7 ⊢ (B ∈ W → B ∈ V) | |
4 | 2, 3 | syl5eqel 2437 | . . . . . 6 ⊢ (B ∈ W → {y ∣ y ∈ B} ∈ V) |
5 | 4 | alimi 1559 | . . . . 5 ⊢ (∀x B ∈ W → ∀x{y ∣ y ∈ B} ∈ V) |
6 | spsbc 3059 | . . . . 5 ⊢ (A ∈ V → (∀x{y ∣ y ∈ B} ∈ V → [̣A / x]̣{y ∣ y ∈ B} ∈ V)) | |
7 | 5, 6 | syl5 28 | . . . 4 ⊢ (A ∈ V → (∀x B ∈ W → [̣A / x]̣{y ∣ y ∈ B} ∈ V)) |
8 | 7 | imp 418 | . . 3 ⊢ ((A ∈ V ∧ ∀x B ∈ W) → [̣A / x]̣{y ∣ y ∈ B} ∈ V) |
9 | nfcv 2490 | . . . . 5 ⊢ ℲxV | |
10 | 9 | sbcabel 3124 | . . . 4 ⊢ (A ∈ V → ([̣A / x]̣{y ∣ y ∈ B} ∈ V ↔ {y ∣ [̣A / x]̣y ∈ B} ∈ V)) |
11 | 10 | adantr 451 | . . 3 ⊢ ((A ∈ V ∧ ∀x B ∈ W) → ([̣A / x]̣{y ∣ y ∈ B} ∈ V ↔ {y ∣ [̣A / x]̣y ∈ B} ∈ V)) |
12 | 8, 11 | mpbid 201 | . 2 ⊢ ((A ∈ V ∧ ∀x B ∈ W) → {y ∣ [̣A / x]̣y ∈ B} ∈ V) |
13 | 1, 12 | syl5eqel 2437 | 1 ⊢ ((A ∈ V ∧ ∀x B ∈ W) → [A / x]B ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 {cab 2339 Vcvv 2860 [̣wsbc 3047 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: csbex 3148 |
Copyright terms: Public domain | W3C validator |