New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbief Unicode version

Theorem csbief 3177
 Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbief.1
csbief.2
csbief.3
Assertion
Ref Expression
csbief
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem csbief
StepHypRef Expression
1 csbief.1 . 2
2 csbief.2 . . . 4
32a1i 10 . . 3
4 csbief.3 . . 3
53, 4csbiegf 3176 . 2
61, 5ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1642   wcel 1710  wnfc 2476  cvv 2859  csb 3136 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-sbc 3047  df-csb 3137 This theorem is referenced by:  csbing  3462  csbifg  3690  csbiotag  4371  csbopabg  4637  csbima12g  4955  csbovg  5552  eqerlem  5960
 Copyright terms: Public domain W3C validator