New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbiotag | Unicode version |
Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) |
Ref | Expression |
---|---|
csbiotag |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3140 | . . 3 | |
2 | dfsbcq2 3050 | . . . 4 | |
3 | 2 | iotabidv 4361 | . . 3 |
4 | 1, 3 | eqeq12d 2367 | . 2 |
5 | vex 2863 | . . 3 | |
6 | nfs1v 2106 | . . . 4 | |
7 | 6 | nfiota 4344 | . . 3 |
8 | sbequ12 1919 | . . . 4 | |
9 | 8 | iotabidv 4361 | . . 3 |
10 | 5, 7, 9 | csbief 3178 | . 2 |
11 | 4, 10 | vtoclg 2915 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wceq 1642 wsb 1648 wcel 1710 wsbc 3047 csb 3137 cio 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-csb 3138 df-sn 3742 df-uni 3893 df-iota 4340 |
This theorem is referenced by: csbfv12g 5337 |
Copyright terms: Public domain | W3C validator |