New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbief | GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbief.1 | ⊢ A ∈ V |
csbief.2 | ⊢ ℲxC |
csbief.3 | ⊢ (x = A → B = C) |
Ref | Expression |
---|---|
csbief | ⊢ [A / x]B = C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbief.1 | . 2 ⊢ A ∈ V | |
2 | csbief.2 | . . . 4 ⊢ ℲxC | |
3 | 2 | a1i 10 | . . 3 ⊢ (A ∈ V → ℲxC) |
4 | csbief.3 | . . 3 ⊢ (x = A → B = C) | |
5 | 3, 4 | csbiegf 3177 | . 2 ⊢ (A ∈ V → [A / x]B = C) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ [A / x]B = C |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 Vcvv 2860 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: csbing 3463 csbifg 3691 csbiotag 4372 csbopabg 4638 csbima12g 4956 csbovg 5553 eqerlem 5961 |
Copyright terms: Public domain | W3C validator |