NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbresg Unicode version

Theorem csbresg 4977
Description: Distribute proper substitution through the restriction of a class. csbresg 4977 is derived from the virtual deduction proof csbresgVD in set.mm. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbresg

Proof of Theorem csbresg
StepHypRef Expression
1 csbing 3463 . . 3
2 csbxpg 4814 . . . . 5
3 csbconstg 3151 . . . . . 6
43xpeq2d 4809 . . . . 5
52, 4eqtrd 2385 . . . 4
65ineq2d 3458 . . 3
71, 6eqtrd 2385 . 2
8 df-res 4789 . . 3
98csbeq2i 3163 . 2
10 df-res 4789 . 2
117, 9, 103eqtr4g 2410 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wceq 1642   wcel 1710  cvv 2860  csb 3137   cin 3209   cxp 4771   cres 4775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138  df-nin 3212  df-compl 3213  df-in 3214  df-opab 4624  df-xp 4785  df-res 4789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator