New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfidk2 | Unicode version |
Description: Definition of k in terms of Sk. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
dfidk2 | k Sk k Sk |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idkssvvk 4282 | . 2 k k | |
2 | inss1 3476 | . . 3 Sk k Sk Sk | |
3 | ssetkssvvk 4279 | . . 3 Sk k | |
4 | 2, 3 | sstri 3282 | . 2 Sk k Sk k |
5 | eqss 3288 | . . 3 | |
6 | vex 2863 | . . . 4 | |
7 | vex 2863 | . . . 4 | |
8 | opkelidkg 4275 | . . . 4 k | |
9 | 6, 7, 8 | mp2an 653 | . . 3 k |
10 | elin 3220 | . . . 4 Sk k Sk Sk k Sk | |
11 | opkelssetkg 4269 | . . . . . 6 Sk | |
12 | 6, 7, 11 | mp2an 653 | . . . . 5 Sk |
13 | 6, 7 | opkelcnvk 4251 | . . . . . 6 k Sk Sk |
14 | opkelssetkg 4269 | . . . . . . 7 Sk | |
15 | 7, 6, 14 | mp2an 653 | . . . . . 6 Sk |
16 | 13, 15 | bitri 240 | . . . . 5 k Sk |
17 | 12, 16 | anbi12i 678 | . . . 4 Sk k Sk |
18 | 10, 17 | bitri 240 | . . 3 Sk k Sk |
19 | 5, 9, 18 | 3bitr4i 268 | . 2 k Sk k Sk |
20 | 1, 4, 19 | eqrelkriiv 4214 | 1 k Sk k Sk |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wceq 1642 wcel 1710 cvv 2860 cin 3209 wss 3258 copk 4058 k cxpk 4175 kccnvk 4176 Sk cssetk 4184 k cidk 4185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 df-cnvk 4187 df-ssetk 4194 df-idk 4196 |
This theorem is referenced by: idkex 4315 |
Copyright terms: Public domain | W3C validator |