NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfidk2 Unicode version

Theorem dfidk2 4314
Description: Definition of k in terms of Sk. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
dfidk2 k Sk k Sk

Proof of Theorem dfidk2
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idkssvvk 4282 . 2 k k
2 inss1 3476 . . 3 Sk k Sk Sk
3 ssetkssvvk 4279 . . 3 Sk k
42, 3sstri 3282 . 2 Sk k Sk k
5 eqss 3288 . . 3
6 vex 2863 . . . 4
7 vex 2863 . . . 4
8 opkelidkg 4275 . . . 4 k
96, 7, 8mp2an 653 . . 3 k
10 elin 3220 . . . 4 Sk k Sk Sk k Sk
11 opkelssetkg 4269 . . . . . 6 Sk
126, 7, 11mp2an 653 . . . . 5 Sk
136, 7opkelcnvk 4251 . . . . . 6 k Sk Sk
14 opkelssetkg 4269 . . . . . . 7 Sk
157, 6, 14mp2an 653 . . . . . 6 Sk
1613, 15bitri 240 . . . . 5 k Sk
1712, 16anbi12i 678 . . . 4 Sk k Sk
1810, 17bitri 240 . . 3 Sk k Sk
195, 9, 183bitr4i 268 . 2 k Sk k Sk
201, 4, 19eqrelkriiv 4214 1 k Sk k Sk
Colors of variables: wff setvar class
Syntax hints:   wb 176   wa 358   wceq 1642   wcel 1710  cvv 2860   cin 3209   wss 3258  copk 4058   k cxpk 4175  kccnvk 4176   Sk cssetk 4184   k cidk 4185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-xpk 4186  df-cnvk 4187  df-ssetk 4194  df-idk 4196
This theorem is referenced by:  idkex  4315
  Copyright terms: Public domain W3C validator