New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfidk2 | GIF version |
Description: Definition of Ik in terms of Sk. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
dfidk2 | ⊢ Ik = ( Sk ∩ ◡k Sk ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idkssvvk 4282 | . 2 ⊢ Ik ⊆ (V ×k V) | |
2 | inss1 3476 | . . 3 ⊢ ( Sk ∩ ◡k Sk ) ⊆ Sk | |
3 | ssetkssvvk 4279 | . . 3 ⊢ Sk ⊆ (V ×k V) | |
4 | 2, 3 | sstri 3282 | . 2 ⊢ ( Sk ∩ ◡k Sk ) ⊆ (V ×k V) |
5 | eqss 3288 | . . 3 ⊢ (x = y ↔ (x ⊆ y ∧ y ⊆ x)) | |
6 | vex 2863 | . . . 4 ⊢ x ∈ V | |
7 | vex 2863 | . . . 4 ⊢ y ∈ V | |
8 | opkelidkg 4275 | . . . 4 ⊢ ((x ∈ V ∧ y ∈ V) → (⟪x, y⟫ ∈ Ik ↔ x = y)) | |
9 | 6, 7, 8 | mp2an 653 | . . 3 ⊢ (⟪x, y⟫ ∈ Ik ↔ x = y) |
10 | elin 3220 | . . . 4 ⊢ (⟪x, y⟫ ∈ ( Sk ∩ ◡k Sk ) ↔ (⟪x, y⟫ ∈ Sk ∧ ⟪x, y⟫ ∈ ◡k Sk )) | |
11 | opkelssetkg 4269 | . . . . . 6 ⊢ ((x ∈ V ∧ y ∈ V) → (⟪x, y⟫ ∈ Sk ↔ x ⊆ y)) | |
12 | 6, 7, 11 | mp2an 653 | . . . . 5 ⊢ (⟪x, y⟫ ∈ Sk ↔ x ⊆ y) |
13 | 6, 7 | opkelcnvk 4251 | . . . . . 6 ⊢ (⟪x, y⟫ ∈ ◡k Sk ↔ ⟪y, x⟫ ∈ Sk ) |
14 | opkelssetkg 4269 | . . . . . . 7 ⊢ ((y ∈ V ∧ x ∈ V) → (⟪y, x⟫ ∈ Sk ↔ y ⊆ x)) | |
15 | 7, 6, 14 | mp2an 653 | . . . . . 6 ⊢ (⟪y, x⟫ ∈ Sk ↔ y ⊆ x) |
16 | 13, 15 | bitri 240 | . . . . 5 ⊢ (⟪x, y⟫ ∈ ◡k Sk ↔ y ⊆ x) |
17 | 12, 16 | anbi12i 678 | . . . 4 ⊢ ((⟪x, y⟫ ∈ Sk ∧ ⟪x, y⟫ ∈ ◡k Sk ) ↔ (x ⊆ y ∧ y ⊆ x)) |
18 | 10, 17 | bitri 240 | . . 3 ⊢ (⟪x, y⟫ ∈ ( Sk ∩ ◡k Sk ) ↔ (x ⊆ y ∧ y ⊆ x)) |
19 | 5, 9, 18 | 3bitr4i 268 | . 2 ⊢ (⟪x, y⟫ ∈ Ik ↔ ⟪x, y⟫ ∈ ( Sk ∩ ◡k Sk )) |
20 | 1, 4, 19 | eqrelkriiv 4214 | 1 ⊢ Ik = ( Sk ∩ ◡k Sk ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∩ cin 3209 ⊆ wss 3258 ⟪copk 4058 ×k cxpk 4175 ◡kccnvk 4176 Sk cssetk 4184 Ik cidk 4185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 df-cnvk 4187 df-ssetk 4194 df-idk 4196 |
This theorem is referenced by: idkex 4315 |
Copyright terms: Public domain | W3C validator |