NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfidk2 GIF version

Theorem dfidk2 4314
Description: Definition of Ik in terms of Sk. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
dfidk2 Ik = ( Skk Sk )

Proof of Theorem dfidk2
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idkssvvk 4282 . 2 Ik (V ×k V)
2 inss1 3476 . . 3 ( Skk Sk ) Sk
3 ssetkssvvk 4279 . . 3 Sk (V ×k V)
42, 3sstri 3282 . 2 ( Skk Sk ) (V ×k V)
5 eqss 3288 . . 3 (x = y ↔ (x y y x))
6 vex 2863 . . . 4 x V
7 vex 2863 . . . 4 y V
8 opkelidkg 4275 . . . 4 ((x V y V) → (⟪x, y Ikx = y))
96, 7, 8mp2an 653 . . 3 (⟪x, y Ikx = y)
10 elin 3220 . . . 4 (⟪x, y ( Skk Sk ) ↔ (⟪x, y Sk x, y k Sk ))
11 opkelssetkg 4269 . . . . . 6 ((x V y V) → (⟪x, y Skx y))
126, 7, 11mp2an 653 . . . . 5 (⟪x, y Skx y)
136, 7opkelcnvk 4251 . . . . . 6 (⟪x, y k Sk ↔ ⟪y, x Sk )
14 opkelssetkg 4269 . . . . . . 7 ((y V x V) → (⟪y, x Sky x))
157, 6, 14mp2an 653 . . . . . 6 (⟪y, x Sky x)
1613, 15bitri 240 . . . . 5 (⟪x, y k Sky x)
1712, 16anbi12i 678 . . . 4 ((⟪x, y Sk x, y k Sk ) ↔ (x y y x))
1810, 17bitri 240 . . 3 (⟪x, y ( Skk Sk ) ↔ (x y y x))
195, 9, 183bitr4i 268 . 2 (⟪x, y Ik ↔ ⟪x, y ( Skk Sk ))
201, 4, 19eqrelkriiv 4214 1 Ik = ( Skk Sk )
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   = wceq 1642   wcel 1710  Vcvv 2860  cin 3209   wss 3258  copk 4058   ×k cxpk 4175  kccnvk 4176   Sk cssetk 4184   Ik cidk 4185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-xpk 4186  df-cnvk 4187  df-ssetk 4194  df-idk 4196
This theorem is referenced by:  idkex  4315
  Copyright terms: Public domain W3C validator