New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dvelim | Unicode version |
Description: This theorem can be used
to eliminate a distinct variable restriction on
and and replace it with the
"distinctor"
as an antecedent. normally has free and can be read
, and
substitutes for and can be read
. We don't require that and be distinct: if
they aren't, the distinctor will become false (in multiple-element
domains of discourse) and "protect" the consequent.
To obtain a closed-theorem form of this inference, prefix the hypotheses with , conjoin them, and apply dvelimdf 2082. Other variants of this theorem are dvelimh 1964 (with no distinct variable restrictions), dvelimhw 1849 (that avoids ax-12 1925), and dvelimALT 2133 (that avoids ax-10 2140). (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
dvelim.1 | |
dvelim.2 |
Ref | Expression |
---|---|
dvelim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvelim.1 | . 2 | |
2 | ax-17 1616 | . 2 | |
3 | dvelim.2 | . 2 | |
4 | 1, 2, 3 | dvelimh 1964 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: ax15 2021 eujustALT 2207 |
Copyright terms: Public domain | W3C validator |