| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > eujustALT | Unicode version | ||
| Description: A soundness justification
theorem for df-eu 2208, showing that the
       definition is equivalent to itself with its dummy variable renamed.
       Note that  | 
| Ref | Expression | 
|---|---|
| eujustALT | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equequ2 1686 | 
. . . . . 6
 | |
| 2 | 1 | bibi2d 309 | 
. . . . 5
 | 
| 3 | 2 | albidv 1625 | 
. . . 4
 | 
| 4 | 3 | sps 1754 | 
. . 3
 | 
| 5 | 4 | drex1 1967 | 
. 2
 | 
| 6 | hbnae 1955 | 
. . . . . 6
 | |
| 7 | hbnae 1955 | 
. . . . . 6
 | |
| 8 | 6, 7 | alrimih 1565 | 
. . . . 5
 | 
| 9 | ax-17 1616 | 
. . . . . . . 8
 | |
| 10 | equequ2 1686 | 
. . . . . . . . . . 11
 | |
| 11 | 10 | bibi2d 309 | 
. . . . . . . . . 10
 | 
| 12 | 11 | albidv 1625 | 
. . . . . . . . 9
 | 
| 13 | 12 | notbid 285 | 
. . . . . . . 8
 | 
| 14 | 9, 13 | dvelim 2016 | 
. . . . . . 7
 | 
| 15 | 14 | naecoms 1948 | 
. . . . . 6
 | 
| 16 | ax-17 1616 | 
. . . . . . 7
 | |
| 17 | equequ2 1686 | 
. . . . . . . . . 10
 | |
| 18 | 17 | bibi2d 309 | 
. . . . . . . . 9
 | 
| 19 | 18 | albidv 1625 | 
. . . . . . . 8
 | 
| 20 | 19 | notbid 285 | 
. . . . . . 7
 | 
| 21 | 16, 20 | dvelim 2016 | 
. . . . . 6
 | 
| 22 | 3 | notbid 285 | 
. . . . . . 7
 | 
| 23 | 22 | a1i 10 | 
. . . . . 6
 | 
| 24 | 15, 21, 23 | cbv2h 1980 | 
. . . . 5
 | 
| 25 | 8, 24 | syl 15 | 
. . . 4
 | 
| 26 | 25 | notbid 285 | 
. . 3
 | 
| 27 | df-ex 1542 | 
. . 3
 | |
| 28 | df-ex 1542 | 
. . 3
 | |
| 29 | 26, 27, 28 | 3bitr4g 279 | 
. 2
 | 
| 30 | 5, 29 | pm2.61i 156 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |