NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dvelim GIF version

Theorem dvelim 2016
Description: This theorem can be used to eliminate a distinct variable restriction on x and z and replace it with the "distinctor" ¬ xx = y as an antecedent. φ normally has z free and can be read φ(z), and ψ substitutes y for z and can be read φ(y). We don't require that x and y be distinct: if they aren't, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with xz, conjoin them, and apply dvelimdf 2082.

Other variants of this theorem are dvelimh 1964 (with no distinct variable restrictions), dvelimhw 1849 (that avoids ax-12 1925), and dvelimALT 2133 (that avoids ax-10 2140). (Contributed by NM, 23-Nov-1994.)

Hypotheses
Ref Expression
dvelim.1 (φxφ)
dvelim.2 (z = y → (φψ))
Assertion
Ref Expression
dvelim x x = y → (ψxψ))
Distinct variable group:   ψ,z
Allowed substitution hints:   φ(x,y,z)   ψ(x,y)

Proof of Theorem dvelim
StepHypRef Expression
1 dvelim.1 . 2 (φxφ)
2 ax-17 1616 . 2 (ψzψ)
3 dvelim.2 . 2 (z = y → (φψ))
41, 2, 3dvelimh 1964 1 x x = y → (ψxψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  ax15  2021  eujustALT  2207
  Copyright terms: Public domain W3C validator