NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elabf Unicode version

Theorem elabf 2985
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabf.1  F/
elabf.2
elabf.3
Assertion
Ref Expression
elabf
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem elabf
StepHypRef Expression
1 elabf.2 . 2
2 nfcv 2490 . . 3  F/_
3 elabf.1 . . 3  F/
4 elabf.3 . . 3
52, 3, 4elabgf 2984 . 2
61, 5ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   F/wnf 1544   wceq 1642   wcel 1710  cab 2339  cvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862
This theorem is referenced by:  elab  2986
  Copyright terms: Public domain W3C validator