Theorem List for New Foundations Explorer - 2901-3000   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | ceqsex8v 2901* | 
Elimination of eight existential quantifiers, using implicit
       substitution.  (Contributed by NM, 23-Sep-2011.)
 | 
                                                                                                                      
                          
                          
                                                                                                                                                                                                                             
                                 | 
|   | 
| Theorem | gencbvex 2902* | 
Change of bound variable using implicit substitution.  (Contributed by
       NM, 17-May-1996.)  (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 | 
                                                                                                                        | 
|   | 
| Theorem | gencbvex2 2903* | 
Restatement of gencbvex 2902 with weaker hypotheses.  (Contributed by
       Jeffrey Hankins, 6-Dec-2006.)
 | 
                                                                                                                        | 
|   | 
| Theorem | gencbval 2904* | 
Change of bound variable using implicit substitution.  (Contributed by
       NM, 17-May-1996.)
 | 
                                                                                                                        | 
|   | 
| Theorem | sbhypf 2905* | 
Introduce an explicit substitution into an implicit substitution
       hypothesis.  See also csbhypf 3172.  (Contributed by Raph Levien,
       10-Apr-2004.)
 | 
                  
                                      ![]](rbrack.gif)         | 
|   | 
| Theorem | vtoclgft 2906 | 
Closed theorem form of vtoclgf 2914.  (Contributed by NM, 17-Feb-2013.)
       (Revised by Mario Carneiro, 12-Oct-2016.)
 | 
        
       
                                             | 
|   | 
| Theorem | vtocldf 2907 | 
Implicit substitution of a class for a setvar variable.  (Contributed
         by Mario Carneiro, 15-Oct-2016.)
 | 
                                                                                                                              | 
|   | 
| Theorem | vtocld 2908* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       Mario Carneiro, 15-Oct-2016.)
 | 
                                                                              | 
|   | 
| Theorem | vtoclf 2909* | 
Implicit substitution of a class for a setvar variable.  This is a
       generalization of chvar 1986.  (Contributed by NM, 30-Aug-1993.)
 | 
                                                                  | 
|   | 
| Theorem | vtocl 2910* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 30-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | vtocl2 2911* | 
Implicit substitution of classes for setvar variables.  (Contributed by
       NM, 26-Jul-1995.)  (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 | 
                                 
                                             | 
|   | 
| Theorem | vtocl3 2912* | 
Implicit substitution of classes for setvar variables.  (Contributed by
       NM, 3-Jun-1995.)  (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 | 
                                                                                                    | 
|   | 
| Theorem | vtoclb 2913* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 23-Dec-1993.)
 | 
                                                                                            | 
|   | 
| Theorem | vtoclgf 2914 | 
Implicit substitution of a class for a setvar variable, with
       bound-variable hypotheses in place of distinct variable restrictions.
       (Contributed by NM, 21-Sep-2003.)  (Proof shortened by Mario Carneiro,
       10-Oct-2016.)
 | 
                              
                                            | 
|   | 
| Theorem | vtoclg 2915* | 
Implicit substitution of a class expression for a setvar variable.
       (Contributed by NM, 17-Apr-1995.)
 | 
                                                  | 
|   | 
| Theorem | vtoclbg 2916* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 29-Apr-1994.)
 | 
                                                                                        | 
|   | 
| Theorem | vtocl2gf 2917 | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 25-Apr-1995.)
 | 
                                                                                                                                                  | 
|   | 
| Theorem | vtocl3gf 2918 | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 10-Aug-2013.)  (Revised by Mario Carneiro, 10-Oct-2016.)
 | 
                                                                                                                  
                          
                          
                                                              | 
|   | 
| Theorem | vtocl2g 2919* | 
Implicit substitution of 2 classes for 2 setvar variables.  (Contributed
       by NM, 25-Apr-1995.)
 | 
                                                                                      | 
|   | 
| Theorem | vtoclgaf 2920* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 17-Feb-2006.)  (Revised by Mario Carneiro, 10-Oct-2016.)
 | 
                              
                                                      | 
|   | 
| Theorem | vtoclga 2921* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 20-Aug-1995.)
 | 
                                                            | 
|   | 
| Theorem | vtocl2gaf 2922* | 
Implicit substitution of 2 classes for 2 setvar variables.  (Contributed
       by NM, 10-Aug-2013.)
 | 
                                                                                                                                                                      | 
|   | 
| Theorem | vtocl2ga 2923* | 
Implicit substitution of 2 classes for 2 setvar variables.  (Contributed
       by NM, 20-Aug-1995.)
 | 
                                                                                                          | 
|   | 
| Theorem | vtocl3gaf 2924* | 
Implicit substitution of 3 classes for 3 setvar variables.  (Contributed
       by NM, 10-Aug-2013.)  (Revised by Mario Carneiro, 11-Oct-2016.)
 | 
                                                                                                                  
                          
                          
                                                                                          | 
|   | 
| Theorem | vtocl3ga 2925* | 
Implicit substitution of 3 classes for 3 setvar variables.  (Contributed
       by NM, 20-Aug-1995.)
 | 
                                                                                                                                                    | 
|   | 
| Theorem | vtocleg 2926* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 10-Jan-2004.)
 | 
                                  | 
|   | 
| Theorem | vtoclegft 2927* | 
Implicit substitution of a class for a setvar variable.  (Closed theorem
       version of vtoclef 2928.)  (Contributed by NM, 7-Nov-2005.)  (Revised
by
       Mario Carneiro, 11-Oct-2016.)
 | 
                                      | 
|   | 
| Theorem | vtoclef 2928* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 18-Aug-1993.)
 | 
                                
                  | 
|   | 
| Theorem | vtocle 2929* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 9-Sep-1993.)
 | 
                                      | 
|   | 
| Theorem | vtoclri 2930* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 21-Nov-1994.)
 | 
                              
                 
          | 
|   | 
| Theorem | spcimgft 2931 | 
A closed version of spcimgf 2933.  (Contributed by Mario Carneiro,
       4-Jan-2017.)
 | 
                                                                      | 
|   | 
| Theorem | spcgft 2932 | 
A closed version of spcgf 2935.  (Contributed by Andrew Salmon,
       6-Jun-2011.)  (Revised by Mario Carneiro, 4-Jan-2017.)
 | 
                                                   
                   | 
|   | 
| Theorem | spcimgf 2933 | 
Rule of specialization, using implicit substitution.  Compare Theorem
         7.3 of [Quine] p. 44.  (Contributed by
Mario Carneiro, 4-Jan-2017.)
 | 
                              
                        
                  | 
|   | 
| Theorem | spcimegf 2934 | 
Existential specialization, using implicit substitution.  (Contributed
       by Mario Carneiro, 4-Jan-2017.)
 | 
                              
                        
                  | 
|   | 
| Theorem | spcgf 2935 | 
Rule of specialization, using implicit substitution.  Compare Theorem
       7.3 of [Quine] p. 44.  (Contributed by NM,
2-Feb-1997.)  (Revised by
       Andrew Salmon, 12-Aug-2011.)
 | 
                              
                                          | 
|   | 
| Theorem | spcegf 2936 | 
Existential specialization, using implicit substitution.  (Contributed
       by NM, 2-Feb-1997.)
 | 
                              
                                          | 
|   | 
| Theorem | spcimdv 2937* | 
Restricted specialization, using implicit substitution.  (Contributed
         by Mario Carneiro, 4-Jan-2017.)
 | 
                                                                      | 
|   | 
| Theorem | spcdv 2938* | 
Rule of specialization, using implicit substitution.  Analogous to
         rspcdv 2959.  (Contributed by David Moews, 1-May-2017.)
 | 
                                                                      | 
|   | 
| Theorem | spcimedv 2939* | 
Restricted existential specialization, using implicit substitution.
       (Contributed by Mario Carneiro, 4-Jan-2017.)
 | 
                                                                      | 
|   | 
| Theorem | spcgv 2940* | 
Rule of specialization, using implicit substitution.  Compare Theorem
       7.3 of [Quine] p. 44.  (Contributed by NM,
22-Jun-1994.)
 | 
                                                | 
|   | 
| Theorem | spcegv 2941* | 
Existential specialization, using implicit substitution.  (Contributed
       by NM, 14-Aug-1994.)
 | 
                                                | 
|   | 
| Theorem | spc2egv 2942* | 
Existential specialization with 2 quantifiers, using implicit
       substitution.  (Contributed by NM, 3-Aug-1995.)
 | 
                                                                      | 
|   | 
| Theorem | spc2gv 2943* | 
Specialization with 2 quantifiers, using implicit substitution.
       (Contributed by NM, 27-Apr-2004.)
 | 
                                                                      | 
|   | 
| Theorem | spc3egv 2944* | 
Existential specialization with 3 quantifiers, using implicit
       substitution.  (Contributed by NM, 12-May-2008.)
 | 
                                                                                        | 
|   | 
| Theorem | spc3gv 2945* | 
Specialization with 3 quantifiers, using implicit substitution.
       (Contributed by NM, 12-May-2008.)
 | 
                                                                                        | 
|   | 
| Theorem | spcv 2946* | 
Rule of specialization, using implicit substitution.  (Contributed by
       NM, 22-Jun-1994.)
 | 
                                                    | 
|   | 
| Theorem | spcev 2947* | 
Existential specialization, using implicit substitution.  (Contributed
       by NM, 31-Dec-1993.)  (Proof shortened by Eric Schmidt, 22-Dec-2006.)
 | 
                                                    | 
|   | 
| Theorem | spc2ev 2948* | 
Existential specialization, using implicit substitution.  (Contributed
       by NM, 3-Aug-1995.)
 | 
                                 
                                             | 
|   | 
| Theorem | rspct 2949* | 
A closed version of rspc 2950.  (Contributed by Andrew Salmon,
       6-Jun-2011.)
 | 
                                       
                        | 
|   | 
| Theorem | rspc 2950* | 
Restricted specialization, using implicit substitution.  (Contributed by
       NM, 19-Apr-2005.)  (Revised by Mario Carneiro, 11-Oct-2016.)
 | 
                  
                                               | 
|   | 
| Theorem | rspce 2951* | 
Restricted existential specialization, using implicit substitution.
       (Contributed by NM, 26-May-1998.)  (Revised by Mario Carneiro,
       11-Oct-2016.)
 | 
                  
                                       
        | 
|   | 
| Theorem | rspcv 2952* | 
Restricted specialization, using implicit substitution.  (Contributed by
       NM, 26-May-1998.)
 | 
                                                     | 
|   | 
| Theorem | rspccv 2953* | 
Restricted specialization, using implicit substitution.  (Contributed by
       NM, 2-Feb-2006.)
 | 
                                                     | 
|   | 
| Theorem | rspcva 2954* | 
Restricted specialization, using implicit substitution.  (Contributed by
       NM, 13-Sep-2005.)
 | 
                                                     | 
|   | 
| Theorem | rspccva 2955* | 
Restricted specialization, using implicit substitution.  (Contributed by
       NM, 26-Jul-2006.)  (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 | 
                                      
         
      | 
|   | 
| Theorem | rspcev 2956* | 
Restricted existential specialization, using implicit substitution.
       (Contributed by NM, 26-May-1998.)
 | 
                                             
        | 
|   | 
| Theorem | rspcimdv 2957* | 
Restricted specialization, using implicit substitution.  (Contributed
         by Mario Carneiro, 4-Jan-2017.)
 | 
                                                                           | 
|   | 
| Theorem | rspcimedv 2958* | 
Restricted existential specialization, using implicit substitution.
       (Contributed by Mario Carneiro, 4-Jan-2017.)
 | 
                                                                           | 
|   | 
| Theorem | rspcdv 2959* | 
Restricted specialization, using implicit substitution.  (Contributed by
       NM, 17-Feb-2007.)  (Revised by Mario Carneiro, 4-Jan-2017.)
 | 
                                                              
             | 
|   | 
| Theorem | rspcedv 2960* | 
Restricted existential specialization, using implicit substitution.
       (Contributed by FL, 17-Apr-2007.)  (Revised by Mario Carneiro,
       4-Jan-2017.)
 | 
                                                                           | 
|   | 
| Theorem | rspc2 2961* | 
2-variable restricted specialization, using implicit substitution.
       (Contributed by NM, 9-Nov-2012.)
 | 
                                                                                                                        | 
|   | 
| Theorem | rspc2v 2962* | 
2-variable restricted specialization, using implicit substitution.
       (Contributed by NM, 13-Sep-1999.)
 | 
                                                                                                | 
|   | 
| Theorem | rspc2va 2963* | 
2-variable restricted specialization, using implicit substitution.
       (Contributed by NM, 18-Jun-2014.)
 | 
                                                                                                | 
|   | 
| Theorem | rspc2ev 2964* | 
2-variable restricted existential specialization, using implicit
       substitution.  (Contributed by NM, 16-Oct-1999.)
 | 
                                                                          
                    | 
|   | 
| Theorem | rspc3v 2965* | 
3-variable restricted specialization, using implicit substitution.
       (Contributed by NM, 10-May-2005.)
 | 
                                                                                                                                         | 
|   | 
| Theorem | rspc3ev 2966* | 
3-variable restricted existentional specialization, using implicit
       substitution.  (Contributed by NM, 25-Jul-2012.)
 | 
                                                                                                         
                                | 
|   | 
| Theorem | eqvinc 2967* | 
A variable introduction law for class equality.  (Contributed by NM,
       14-Apr-1995.)  (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 | 
                                            | 
|   | 
| Theorem | eqvincf 2968 | 
A variable introduction law for class equality, using bound-variable
       hypotheses instead of distinct variable conditions.  (Contributed by NM,
       14-Sep-2003.)
 | 
                                                                    | 
|   | 
| Theorem | alexeq 2969* | 
Two ways to express substitution of   for   in  .
       (Contributed by NM, 2-Mar-1995.)
 | 
                                                | 
|   | 
| Theorem | ceqex 2970* | 
Equality implies equivalence with substitution.  (Contributed by NM,
       2-Mar-1995.)
 | 
                    
            | 
|   | 
| Theorem | ceqsexg 2971* | 
A representation of explicit substitution of a class for a variable,
       inferred from an implicit substitution hypothesis.  (Contributed by NM,
       11-Oct-2004.)
 | 
                  
                                                    | 
|   | 
| Theorem | ceqsexgv 2972* | 
Elimination of an existential quantifier, using implicit substitution.
       (Contributed by NM, 29-Dec-1996.)
 | 
                                                          | 
|   | 
| Theorem | ceqsrexv 2973* | 
Elimination of a restricted existential quantifier, using implicit
       substitution.  (Contributed by NM, 30-Apr-2004.)
 | 
                                                        
  
     | 
|   | 
| Theorem | ceqsrexbv 2974* | 
Elimination of a restricted existential quantifier, using implicit
       substitution.  (Contributed by Mario Carneiro, 14-Mar-2014.)
 | 
                                               
  
              | 
|   | 
| Theorem | ceqsrex2v 2975* | 
Elimination of a restricted existential quantifier, using implicit
       substitution.  (Contributed by NM, 29-Oct-2005.)
 | 
                                                                                                                    | 
|   | 
| Theorem | clel2 2976* | 
An alternate definition of class membership when the class is a set.
       (Contributed by NM, 18-Aug-1993.)
 | 
                                            | 
|   | 
| Theorem | clel3g 2977* | 
An alternate definition of class membership when the class is a set.
       (Contributed by NM, 13-Aug-2005.)
 | 
                                        | 
|   | 
| Theorem | clel3 2978* | 
An alternate definition of class membership when the class is a set.
       (Contributed by NM, 18-Aug-1993.)
 | 
                                            | 
|   | 
| Theorem | clel4 2979* | 
An alternate definition of class membership when the class is a set.
       (Contributed by NM, 18-Aug-1993.)
 | 
                                            | 
|   | 
| Theorem | pm13.183 2980* | 
Compare theorem *13.183 in [WhiteheadRussell] p. 178.  Only   is
       required to be a set.  (Contributed by Andrew Salmon, 3-Jun-2011.)
 | 
                                        | 
|   | 
| Theorem | rr19.3v 2981* | 
Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89.  We
       don't need the nonempty class condition of r19.3rzv 3644 when there is an
       outer quantifier.  (Contributed by NM, 25-Oct-2012.)
 | 
                               | 
|   | 
| Theorem | rr19.28v 2982* | 
Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90.  We
       don't need the nonempty class condition of r19.28zv 3646 when there is an
       outer quantifier.  (Contributed by NM, 29-Oct-2012.)
 | 
                                                  | 
|   | 
| Theorem | elabgt 2983* | 
Membership in a class abstraction, using implicit substitution.  (Closed
       theorem version of elabg 2987.)  (Contributed by NM, 7-Nov-2005.)  (Proof
       shortened by Andrew Salmon, 8-Jun-2011.)
 | 
                                                      | 
|   | 
| Theorem | elabgf 2984 | 
Membership in a class abstraction, using implicit substitution.  Compare
       Theorem 6.13 of [Quine] p. 44.  This
version has bound-variable
       hypotheses in place of distinct variable restrictions.  (Contributed by
       NM, 21-Sep-2003.)  (Revised by Mario Carneiro, 12-Oct-2016.)
 | 
                              
                                                  | 
|   | 
| Theorem | elabf 2985* | 
Membership in a class abstraction, using implicit substitution.
       (Contributed by NM, 1-Aug-1994.)  (Revised by Mario Carneiro,
       12-Oct-2016.)
 | 
                                                                        | 
|   | 
| Theorem | elab 2986* | 
Membership in a class abstraction, using implicit substitution.  Compare
       Theorem 6.13 of [Quine] p. 44. 
(Contributed by NM, 1-Aug-1994.)
 | 
                                                            | 
|   | 
| Theorem | elabg 2987* | 
Membership in a class abstraction, using implicit substitution.  Compare
       Theorem 6.13 of [Quine] p. 44. 
(Contributed by NM, 14-Apr-1995.)
 | 
                                                        | 
|   | 
| Theorem | elab2g 2988* | 
Membership in a class abstraction, using implicit substitution.
       (Contributed by NM, 13-Sep-1995.)
 | 
                               
                                       | 
|   | 
| Theorem | elab2 2989* | 
Membership in a class abstraction, using implicit substitution.
       (Contributed by NM, 13-Sep-1995.)
 | 
                                             
                             | 
|   | 
| Theorem | elab4g 2990* | 
Membership in a class abstraction, using implicit substitution.
       (Contributed by NM, 17-Oct-2012.)
 | 
                               
                            
           | 
|   | 
| Theorem | elab3gf 2991 | 
Membership in a class abstraction, with a weaker antecedent than
       elabgf 2984.  (Contributed by NM, 6-Sep-2011.)
 | 
                              
                                       
                 | 
|   | 
| Theorem | elab3g 2992* | 
Membership in a class abstraction, with a weaker antecedent than
       elabg 2987.  (Contributed by NM, 29-Aug-2006.)
 | 
                                             
                 | 
|   | 
| Theorem | elab3 2993* | 
Membership in a class abstraction using implicit substitution.
       (Contributed by NM, 10-Nov-2000.)
 | 
                                                                  | 
|   | 
| Theorem | elrabf 2994 | 
Membership in a restricted class abstraction, using implicit
       substitution.  This version has bound-variable hypotheses in place of
       distinct variable restrictions.  (Contributed by NM, 21-Sep-2003.)
 | 
                                                                                     
           | 
|   | 
| Theorem | elrab 2995* | 
Membership in a restricted class abstraction, using implicit
       substitution.  (Contributed by NM, 21-May-1999.)
 | 
                                                 
           | 
|   | 
| Theorem | elrab3 2996* | 
Membership in a restricted class abstraction, using implicit
       substitution.  (Contributed by NM, 5-Oct-2006.)
 | 
                                                            | 
|   | 
| Theorem | elrab2 2997* | 
Membership in a class abstraction, using implicit substitution.
       (Contributed by NM, 2-Nov-2006.)
 | 
                               
                                
           | 
|   | 
| Theorem | ralab 2998* | 
Universal quantification over a class abstraction.  (Contributed by Jeff
       Madsen, 10-Jun-2010.)
 | 
                                                        | 
|   | 
| Theorem | ralrab 2999* | 
Universal quantification over a restricted class abstraction.
       (Contributed by Jeff Madsen, 10-Jun-2010.)
 | 
                                                                 | 
|   | 
| Theorem | rexab 3000* | 
Existential quantification over a class abstraction.  (Contributed by
       Mario Carneiro, 23-Jan-2014.)  (Revised by Mario Carneiro,
       3-Sep-2015.)
 | 
                                                        |