| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > elabgf | Unicode version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| elabgf.1 | 
 | 
| elabgf.2 | 
 | 
| elabgf.3 | 
 | 
| Ref | Expression | 
|---|---|
| elabgf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elabgf.1 | 
. 2
 | |
| 2 | nfab1 2492 | 
. . . 4
 | |
| 3 | 1, 2 | nfel 2498 | 
. . 3
 | 
| 4 | elabgf.2 | 
. . 3
 | |
| 5 | 3, 4 | nfbi 1834 | 
. 2
 | 
| 6 | eleq1 2413 | 
. . 3
 | |
| 7 | elabgf.3 | 
. . 3
 | |
| 8 | 6, 7 | bibi12d 312 | 
. 2
 | 
| 9 | abid 2341 | 
. 2
 | |
| 10 | 1, 5, 8, 9 | vtoclgf 2914 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 | 
| This theorem is referenced by: elabf 2985 elabg 2987 elab3gf 2991 elrabf 2994 | 
| Copyright terms: Public domain | W3C validator |