NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elfunsg Unicode version

Theorem elfunsg 5831
Description: Membership in the set of all functions. (Contributed by Scott Fenton, 31-Jul-2019.)
Assertion
Ref Expression
elfunsg Funs

Proof of Theorem elfunsg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq1 2413 . 2 Funs Funs
2 funeq 5128 . 2
3 vex 2863 . . 3
43elfuns 5830 . 2 Funs
51, 2, 4vtoclbg 2916 1 Funs
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wcel 1710   wfun 4776   Funs cfuns 5760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-opab 4624  df-br 4641  df-co 4727  df-cnv 4786  df-fun 4790  df-funs 5761
This theorem is referenced by:  elfunsi  5832
  Copyright terms: Public domain W3C validator