New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elfunsg | GIF version |
Description: Membership in the set of all functions. (Contributed by Scott Fenton, 31-Jul-2019.) |
Ref | Expression |
---|---|
elfunsg | ⊢ (F ∈ V → (F ∈ Funs ↔ Fun F)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . 2 ⊢ (f = F → (f ∈ Funs ↔ F ∈ Funs )) | |
2 | funeq 5128 | . 2 ⊢ (f = F → (Fun f ↔ Fun F)) | |
3 | vex 2863 | . . 3 ⊢ f ∈ V | |
4 | 3 | elfuns 5830 | . 2 ⊢ (f ∈ Funs ↔ Fun f) |
5 | 1, 2, 4 | vtoclbg 2916 | 1 ⊢ (F ∈ V → (F ∈ Funs ↔ Fun F)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∈ wcel 1710 Fun wfun 4776 Funs cfuns 5760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-opab 4624 df-br 4641 df-co 4727 df-cnv 4786 df-fun 4790 df-funs 5761 |
This theorem is referenced by: elfunsi 5832 |
Copyright terms: Public domain | W3C validator |