New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  elimdhyp Unicode version

Theorem elimdhyp 3715
 Description: Version of elimhyp 3710 where the hypothesis is deduced from the final antecedent. See ghomgrplem in set.mm for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008.)
Hypotheses
Ref Expression
elimdhyp.1
elimdhyp.2
elimdhyp.3
elimdhyp.4
Assertion
Ref Expression
elimdhyp

Proof of Theorem elimdhyp
StepHypRef Expression
1 elimdhyp.1 . . 3
2 iftrue 3668 . . . . 5
32eqcomd 2358 . . . 4
4 elimdhyp.2 . . . 4
53, 4syl 15 . . 3
61, 5mpbid 201 . 2
7 elimdhyp.4 . . 3
8 iffalse 3669 . . . . 5
98eqcomd 2358 . . . 4
10 elimdhyp.3 . . . 4
119, 10syl 15 . . 3
127, 11mpbii 202 . 2
136, 12pm2.61i 156 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 176   wceq 1642  cif 3662 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-if 3663 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator