New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elimdhyp | GIF version |
Description: Version of elimhyp 3711 where the hypothesis is deduced from the final antecedent. See ghomgrplem in set.mm for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008.) |
Ref | Expression |
---|---|
elimdhyp.1 | ⊢ (φ → ψ) |
elimdhyp.2 | ⊢ (A = if(φ, A, B) → (ψ ↔ χ)) |
elimdhyp.3 | ⊢ (B = if(φ, A, B) → (θ ↔ χ)) |
elimdhyp.4 | ⊢ θ |
Ref | Expression |
---|---|
elimdhyp | ⊢ χ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimdhyp.1 | . . 3 ⊢ (φ → ψ) | |
2 | iftrue 3669 | . . . . 5 ⊢ (φ → if(φ, A, B) = A) | |
3 | 2 | eqcomd 2358 | . . . 4 ⊢ (φ → A = if(φ, A, B)) |
4 | elimdhyp.2 | . . . 4 ⊢ (A = if(φ, A, B) → (ψ ↔ χ)) | |
5 | 3, 4 | syl 15 | . . 3 ⊢ (φ → (ψ ↔ χ)) |
6 | 1, 5 | mpbid 201 | . 2 ⊢ (φ → χ) |
7 | elimdhyp.4 | . . 3 ⊢ θ | |
8 | iffalse 3670 | . . . . 5 ⊢ (¬ φ → if(φ, A, B) = B) | |
9 | 8 | eqcomd 2358 | . . . 4 ⊢ (¬ φ → B = if(φ, A, B)) |
10 | elimdhyp.3 | . . . 4 ⊢ (B = if(φ, A, B) → (θ ↔ χ)) | |
11 | 9, 10 | syl 15 | . . 3 ⊢ (¬ φ → (θ ↔ χ)) |
12 | 7, 11 | mpbii 202 | . 2 ⊢ (¬ φ → χ) |
13 | 6, 12 | pm2.61i 156 | 1 ⊢ χ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 = wceq 1642 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |