| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > elimhyp2v | Unicode version | ||
| Description: Eliminate a hypothesis containing 2 class variables. (Contributed by NM, 14-Aug-1999.) |
| Ref | Expression |
|---|---|
| elimhyp2v.1 |
|
| elimhyp2v.2 |
|
| elimhyp2v.3 |
|
| elimhyp2v.4 |
|
| elimhyp2v.5 |
|
| Ref | Expression |
|---|---|
| elimhyp2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3669 |
. . . . . 6
| |
| 2 | 1 | eqcomd 2358 |
. . . . 5
|
| 3 | elimhyp2v.1 |
. . . . 5
| |
| 4 | 2, 3 | syl 15 |
. . . 4
|
| 5 | iftrue 3669 |
. . . . . 6
| |
| 6 | 5 | eqcomd 2358 |
. . . . 5
|
| 7 | elimhyp2v.2 |
. . . . 5
| |
| 8 | 6, 7 | syl 15 |
. . . 4
|
| 9 | 4, 8 | bitrd 244 |
. . 3
|
| 10 | 9 | ibi 232 |
. 2
|
| 11 | elimhyp2v.5 |
. . 3
| |
| 12 | iffalse 3670 |
. . . . . 6
| |
| 13 | 12 | eqcomd 2358 |
. . . . 5
|
| 14 | elimhyp2v.3 |
. . . . 5
| |
| 15 | 13, 14 | syl 15 |
. . . 4
|
| 16 | iffalse 3670 |
. . . . . 6
| |
| 17 | 16 | eqcomd 2358 |
. . . . 5
|
| 18 | elimhyp2v.4 |
. . . . 5
| |
| 19 | 17, 18 | syl 15 |
. . . 4
|
| 20 | 15, 19 | bitrd 244 |
. . 3
|
| 21 | 11, 20 | mpbii 202 |
. 2
|
| 22 | 10, 21 | pm2.61i 156 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |