![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > elimhyp2v | GIF version |
Description: Eliminate a hypothesis containing 2 class variables. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
elimhyp2v.1 | ⊢ (A = if(φ, A, C) → (φ ↔ χ)) |
elimhyp2v.2 | ⊢ (B = if(φ, B, D) → (χ ↔ θ)) |
elimhyp2v.3 | ⊢ (C = if(φ, A, C) → (τ ↔ η)) |
elimhyp2v.4 | ⊢ (D = if(φ, B, D) → (η ↔ θ)) |
elimhyp2v.5 | ⊢ τ |
Ref | Expression |
---|---|
elimhyp2v | ⊢ θ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3669 | . . . . . 6 ⊢ (φ → if(φ, A, C) = A) | |
2 | 1 | eqcomd 2358 | . . . . 5 ⊢ (φ → A = if(φ, A, C)) |
3 | elimhyp2v.1 | . . . . 5 ⊢ (A = if(φ, A, C) → (φ ↔ χ)) | |
4 | 2, 3 | syl 15 | . . . 4 ⊢ (φ → (φ ↔ χ)) |
5 | iftrue 3669 | . . . . . 6 ⊢ (φ → if(φ, B, D) = B) | |
6 | 5 | eqcomd 2358 | . . . . 5 ⊢ (φ → B = if(φ, B, D)) |
7 | elimhyp2v.2 | . . . . 5 ⊢ (B = if(φ, B, D) → (χ ↔ θ)) | |
8 | 6, 7 | syl 15 | . . . 4 ⊢ (φ → (χ ↔ θ)) |
9 | 4, 8 | bitrd 244 | . . 3 ⊢ (φ → (φ ↔ θ)) |
10 | 9 | ibi 232 | . 2 ⊢ (φ → θ) |
11 | elimhyp2v.5 | . . 3 ⊢ τ | |
12 | iffalse 3670 | . . . . . 6 ⊢ (¬ φ → if(φ, A, C) = C) | |
13 | 12 | eqcomd 2358 | . . . . 5 ⊢ (¬ φ → C = if(φ, A, C)) |
14 | elimhyp2v.3 | . . . . 5 ⊢ (C = if(φ, A, C) → (τ ↔ η)) | |
15 | 13, 14 | syl 15 | . . . 4 ⊢ (¬ φ → (τ ↔ η)) |
16 | iffalse 3670 | . . . . . 6 ⊢ (¬ φ → if(φ, B, D) = D) | |
17 | 16 | eqcomd 2358 | . . . . 5 ⊢ (¬ φ → D = if(φ, B, D)) |
18 | elimhyp2v.4 | . . . . 5 ⊢ (D = if(φ, B, D) → (η ↔ θ)) | |
19 | 17, 18 | syl 15 | . . . 4 ⊢ (¬ φ → (η ↔ θ)) |
20 | 15, 19 | bitrd 244 | . . 3 ⊢ (¬ φ → (τ ↔ θ)) |
21 | 11, 20 | mpbii 202 | . 2 ⊢ (¬ φ → θ) |
22 | 10, 21 | pm2.61i 156 | 1 ⊢ θ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 = wceq 1642 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |