New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elimhyp4v | Unicode version |
Description: Eliminate a hypothesis containing 4 class variables (for use with the weak deduction theorem dedth 3704). (Contributed by NM, 16-Apr-2005.) |
Ref | Expression |
---|---|
elimhyp4v.1 | |
elimhyp4v.2 | |
elimhyp4v.3 | |
elimhyp4v.4 | |
elimhyp4v.5 | |
elimhyp4v.6 | |
elimhyp4v.7 | |
elimhyp4v.8 | |
elimhyp4v.9 |
Ref | Expression |
---|---|
elimhyp4v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3669 | . . . . . . 7 | |
2 | 1 | eqcomd 2358 | . . . . . 6 |
3 | elimhyp4v.1 | . . . . . 6 | |
4 | 2, 3 | syl 15 | . . . . 5 |
5 | iftrue 3669 | . . . . . . 7 | |
6 | 5 | eqcomd 2358 | . . . . . 6 |
7 | elimhyp4v.2 | . . . . . 6 | |
8 | 6, 7 | syl 15 | . . . . 5 |
9 | 4, 8 | bitrd 244 | . . . 4 |
10 | iftrue 3669 | . . . . . 6 | |
11 | 10 | eqcomd 2358 | . . . . 5 |
12 | elimhyp4v.3 | . . . . 5 | |
13 | 11, 12 | syl 15 | . . . 4 |
14 | iftrue 3669 | . . . . . 6 | |
15 | 14 | eqcomd 2358 | . . . . 5 |
16 | elimhyp4v.4 | . . . . 5 | |
17 | 15, 16 | syl 15 | . . . 4 |
18 | 9, 13, 17 | 3bitrd 270 | . . 3 |
19 | 18 | ibi 232 | . 2 |
20 | elimhyp4v.9 | . . 3 | |
21 | iffalse 3670 | . . . . . . 7 | |
22 | 21 | eqcomd 2358 | . . . . . 6 |
23 | elimhyp4v.5 | . . . . . 6 | |
24 | 22, 23 | syl 15 | . . . . 5 |
25 | iffalse 3670 | . . . . . . 7 | |
26 | 25 | eqcomd 2358 | . . . . . 6 |
27 | elimhyp4v.6 | . . . . . 6 | |
28 | 26, 27 | syl 15 | . . . . 5 |
29 | 24, 28 | bitrd 244 | . . . 4 |
30 | iffalse 3670 | . . . . . 6 | |
31 | 30 | eqcomd 2358 | . . . . 5 |
32 | elimhyp4v.7 | . . . . 5 | |
33 | 31, 32 | syl 15 | . . . 4 |
34 | iffalse 3670 | . . . . . 6 | |
35 | 34 | eqcomd 2358 | . . . . 5 |
36 | elimhyp4v.8 | . . . . 5 | |
37 | 35, 36 | syl 15 | . . . 4 |
38 | 29, 33, 37 | 3bitrd 270 | . . 3 |
39 | 20, 38 | mpbii 202 | . 2 |
40 | 19, 39 | pm2.61i 156 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wceq 1642 cif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |