| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > elimhyp4v | Unicode version | ||
| Description: Eliminate a hypothesis containing 4 class variables (for use with the weak deduction theorem dedth 3704). (Contributed by NM, 16-Apr-2005.) | 
| Ref | Expression | 
|---|---|
| elimhyp4v.1 | 
 | 
| elimhyp4v.2 | 
 | 
| elimhyp4v.3 | 
 | 
| elimhyp4v.4 | 
 | 
| elimhyp4v.5 | 
 | 
| elimhyp4v.6 | 
 | 
| elimhyp4v.7 | 
 | 
| elimhyp4v.8 | 
 | 
| elimhyp4v.9 | 
 | 
| Ref | Expression | 
|---|---|
| elimhyp4v | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iftrue 3669 | 
. . . . . . 7
 | |
| 2 | 1 | eqcomd 2358 | 
. . . . . 6
 | 
| 3 | elimhyp4v.1 | 
. . . . . 6
 | |
| 4 | 2, 3 | syl 15 | 
. . . . 5
 | 
| 5 | iftrue 3669 | 
. . . . . . 7
 | |
| 6 | 5 | eqcomd 2358 | 
. . . . . 6
 | 
| 7 | elimhyp4v.2 | 
. . . . . 6
 | |
| 8 | 6, 7 | syl 15 | 
. . . . 5
 | 
| 9 | 4, 8 | bitrd 244 | 
. . . 4
 | 
| 10 | iftrue 3669 | 
. . . . . 6
 | |
| 11 | 10 | eqcomd 2358 | 
. . . . 5
 | 
| 12 | elimhyp4v.3 | 
. . . . 5
 | |
| 13 | 11, 12 | syl 15 | 
. . . 4
 | 
| 14 | iftrue 3669 | 
. . . . . 6
 | |
| 15 | 14 | eqcomd 2358 | 
. . . . 5
 | 
| 16 | elimhyp4v.4 | 
. . . . 5
 | |
| 17 | 15, 16 | syl 15 | 
. . . 4
 | 
| 18 | 9, 13, 17 | 3bitrd 270 | 
. . 3
 | 
| 19 | 18 | ibi 232 | 
. 2
 | 
| 20 | elimhyp4v.9 | 
. . 3
 | |
| 21 | iffalse 3670 | 
. . . . . . 7
 | |
| 22 | 21 | eqcomd 2358 | 
. . . . . 6
 | 
| 23 | elimhyp4v.5 | 
. . . . . 6
 | |
| 24 | 22, 23 | syl 15 | 
. . . . 5
 | 
| 25 | iffalse 3670 | 
. . . . . . 7
 | |
| 26 | 25 | eqcomd 2358 | 
. . . . . 6
 | 
| 27 | elimhyp4v.6 | 
. . . . . 6
 | |
| 28 | 26, 27 | syl 15 | 
. . . . 5
 | 
| 29 | 24, 28 | bitrd 244 | 
. . . 4
 | 
| 30 | iffalse 3670 | 
. . . . . 6
 | |
| 31 | 30 | eqcomd 2358 | 
. . . . 5
 | 
| 32 | elimhyp4v.7 | 
. . . . 5
 | |
| 33 | 31, 32 | syl 15 | 
. . . 4
 | 
| 34 | iffalse 3670 | 
. . . . . 6
 | |
| 35 | 34 | eqcomd 2358 | 
. . . . 5
 | 
| 36 | elimhyp4v.8 | 
. . . . 5
 | |
| 37 | 35, 36 | syl 15 | 
. . . 4
 | 
| 38 | 29, 33, 37 | 3bitrd 270 | 
. . 3
 | 
| 39 | 20, 38 | mpbii 202 | 
. 2
 | 
| 40 | 19, 39 | pm2.61i 156 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |