Proof of Theorem elimhyp4v
Step | Hyp | Ref
| Expression |
1 | | iftrue 3669 |
. . . . . . 7
⊢ (φ → if(φ, A,
D) = A) |
2 | 1 | eqcomd 2358 |
. . . . . 6
⊢ (φ → A = if(φ,
A, D)) |
3 | | elimhyp4v.1 |
. . . . . 6
⊢ (A = if(φ,
A, D)
→ (φ ↔ χ)) |
4 | 2, 3 | syl 15 |
. . . . 5
⊢ (φ → (φ ↔ χ)) |
5 | | iftrue 3669 |
. . . . . . 7
⊢ (φ → if(φ, B,
R) = B) |
6 | 5 | eqcomd 2358 |
. . . . . 6
⊢ (φ → B = if(φ,
B, R)) |
7 | | elimhyp4v.2 |
. . . . . 6
⊢ (B = if(φ,
B, R)
→ (χ ↔ θ)) |
8 | 6, 7 | syl 15 |
. . . . 5
⊢ (φ → (χ ↔ θ)) |
9 | 4, 8 | bitrd 244 |
. . . 4
⊢ (φ → (φ ↔ θ)) |
10 | | iftrue 3669 |
. . . . . 6
⊢ (φ → if(φ, C,
S) = C) |
11 | 10 | eqcomd 2358 |
. . . . 5
⊢ (φ → C = if(φ,
C, S)) |
12 | | elimhyp4v.3 |
. . . . 5
⊢ (C = if(φ,
C, S)
→ (θ ↔ τ)) |
13 | 11, 12 | syl 15 |
. . . 4
⊢ (φ → (θ ↔ τ)) |
14 | | iftrue 3669 |
. . . . . 6
⊢ (φ → if(φ, F,
G) = F) |
15 | 14 | eqcomd 2358 |
. . . . 5
⊢ (φ → F = if(φ,
F, G)) |
16 | | elimhyp4v.4 |
. . . . 5
⊢ (F = if(φ,
F, G)
→ (τ ↔ ψ)) |
17 | 15, 16 | syl 15 |
. . . 4
⊢ (φ → (τ ↔ ψ)) |
18 | 9, 13, 17 | 3bitrd 270 |
. . 3
⊢ (φ → (φ ↔ ψ)) |
19 | 18 | ibi 232 |
. 2
⊢ (φ → ψ) |
20 | | elimhyp4v.9 |
. . 3
⊢ η |
21 | | iffalse 3670 |
. . . . . . 7
⊢ (¬ φ → if(φ, A,
D) = D) |
22 | 21 | eqcomd 2358 |
. . . . . 6
⊢ (¬ φ → D = if(φ,
A, D)) |
23 | | elimhyp4v.5 |
. . . . . 6
⊢ (D = if(φ,
A, D)
→ (η ↔ ζ)) |
24 | 22, 23 | syl 15 |
. . . . 5
⊢ (¬ φ → (η ↔ ζ)) |
25 | | iffalse 3670 |
. . . . . . 7
⊢ (¬ φ → if(φ, B,
R) = R) |
26 | 25 | eqcomd 2358 |
. . . . . 6
⊢ (¬ φ → R = if(φ,
B, R)) |
27 | | elimhyp4v.6 |
. . . . . 6
⊢ (R = if(φ,
B, R)
→ (ζ ↔ σ)) |
28 | 26, 27 | syl 15 |
. . . . 5
⊢ (¬ φ → (ζ ↔ σ)) |
29 | 24, 28 | bitrd 244 |
. . . 4
⊢ (¬ φ → (η ↔ σ)) |
30 | | iffalse 3670 |
. . . . . 6
⊢ (¬ φ → if(φ, C,
S) = S) |
31 | 30 | eqcomd 2358 |
. . . . 5
⊢ (¬ φ → S = if(φ,
C, S)) |
32 | | elimhyp4v.7 |
. . . . 5
⊢ (S = if(φ,
C, S)
→ (σ ↔ ρ)) |
33 | 31, 32 | syl 15 |
. . . 4
⊢ (¬ φ → (σ ↔ ρ)) |
34 | | iffalse 3670 |
. . . . . 6
⊢ (¬ φ → if(φ, F,
G) = G) |
35 | 34 | eqcomd 2358 |
. . . . 5
⊢ (¬ φ → G = if(φ,
F, G)) |
36 | | elimhyp4v.8 |
. . . . 5
⊢ (G = if(φ,
F, G)
→ (ρ ↔ ψ)) |
37 | 35, 36 | syl 15 |
. . . 4
⊢ (¬ φ → (ρ ↔ ψ)) |
38 | 29, 33, 37 | 3bitrd 270 |
. . 3
⊢ (¬ φ → (η ↔ ψ)) |
39 | 20, 38 | mpbii 202 |
. 2
⊢ (¬ φ → ψ) |
40 | 19, 39 | pm2.61i 156 |
1
⊢ ψ |