Proof of Theorem elimhyp4v
| Step | Hyp | Ref
| Expression |
| 1 | | iftrue 3669 |
. . . . . . 7
⊢ (φ → if(φ, A,
D) = A) |
| 2 | 1 | eqcomd 2358 |
. . . . . 6
⊢ (φ → A = if(φ,
A, D)) |
| 3 | | elimhyp4v.1 |
. . . . . 6
⊢ (A = if(φ,
A, D)
→ (φ ↔ χ)) |
| 4 | 2, 3 | syl 15 |
. . . . 5
⊢ (φ → (φ ↔ χ)) |
| 5 | | iftrue 3669 |
. . . . . . 7
⊢ (φ → if(φ, B,
R) = B) |
| 6 | 5 | eqcomd 2358 |
. . . . . 6
⊢ (φ → B = if(φ,
B, R)) |
| 7 | | elimhyp4v.2 |
. . . . . 6
⊢ (B = if(φ,
B, R)
→ (χ ↔ θ)) |
| 8 | 6, 7 | syl 15 |
. . . . 5
⊢ (φ → (χ ↔ θ)) |
| 9 | 4, 8 | bitrd 244 |
. . . 4
⊢ (φ → (φ ↔ θ)) |
| 10 | | iftrue 3669 |
. . . . . 6
⊢ (φ → if(φ, C,
S) = C) |
| 11 | 10 | eqcomd 2358 |
. . . . 5
⊢ (φ → C = if(φ,
C, S)) |
| 12 | | elimhyp4v.3 |
. . . . 5
⊢ (C = if(φ,
C, S)
→ (θ ↔ τ)) |
| 13 | 11, 12 | syl 15 |
. . . 4
⊢ (φ → (θ ↔ τ)) |
| 14 | | iftrue 3669 |
. . . . . 6
⊢ (φ → if(φ, F,
G) = F) |
| 15 | 14 | eqcomd 2358 |
. . . . 5
⊢ (φ → F = if(φ,
F, G)) |
| 16 | | elimhyp4v.4 |
. . . . 5
⊢ (F = if(φ,
F, G)
→ (τ ↔ ψ)) |
| 17 | 15, 16 | syl 15 |
. . . 4
⊢ (φ → (τ ↔ ψ)) |
| 18 | 9, 13, 17 | 3bitrd 270 |
. . 3
⊢ (φ → (φ ↔ ψ)) |
| 19 | 18 | ibi 232 |
. 2
⊢ (φ → ψ) |
| 20 | | elimhyp4v.9 |
. . 3
⊢ η |
| 21 | | iffalse 3670 |
. . . . . . 7
⊢ (¬ φ → if(φ, A,
D) = D) |
| 22 | 21 | eqcomd 2358 |
. . . . . 6
⊢ (¬ φ → D = if(φ,
A, D)) |
| 23 | | elimhyp4v.5 |
. . . . . 6
⊢ (D = if(φ,
A, D)
→ (η ↔ ζ)) |
| 24 | 22, 23 | syl 15 |
. . . . 5
⊢ (¬ φ → (η ↔ ζ)) |
| 25 | | iffalse 3670 |
. . . . . . 7
⊢ (¬ φ → if(φ, B,
R) = R) |
| 26 | 25 | eqcomd 2358 |
. . . . . 6
⊢ (¬ φ → R = if(φ,
B, R)) |
| 27 | | elimhyp4v.6 |
. . . . . 6
⊢ (R = if(φ,
B, R)
→ (ζ ↔ σ)) |
| 28 | 26, 27 | syl 15 |
. . . . 5
⊢ (¬ φ → (ζ ↔ σ)) |
| 29 | 24, 28 | bitrd 244 |
. . . 4
⊢ (¬ φ → (η ↔ σ)) |
| 30 | | iffalse 3670 |
. . . . . 6
⊢ (¬ φ → if(φ, C,
S) = S) |
| 31 | 30 | eqcomd 2358 |
. . . . 5
⊢ (¬ φ → S = if(φ,
C, S)) |
| 32 | | elimhyp4v.7 |
. . . . 5
⊢ (S = if(φ,
C, S)
→ (σ ↔ ρ)) |
| 33 | 31, 32 | syl 15 |
. . . 4
⊢ (¬ φ → (σ ↔ ρ)) |
| 34 | | iffalse 3670 |
. . . . . 6
⊢ (¬ φ → if(φ, F,
G) = G) |
| 35 | 34 | eqcomd 2358 |
. . . . 5
⊢ (¬ φ → G = if(φ,
F, G)) |
| 36 | | elimhyp4v.8 |
. . . . 5
⊢ (G = if(φ,
F, G)
→ (ρ ↔ ψ)) |
| 37 | 35, 36 | syl 15 |
. . . 4
⊢ (¬ φ → (ρ ↔ ψ)) |
| 38 | 29, 33, 37 | 3bitrd 270 |
. . 3
⊢ (¬ φ → (η ↔ ψ)) |
| 39 | 20, 38 | mpbii 202 |
. 2
⊢ (¬ φ → ψ) |
| 40 | 19, 39 | pm2.61i 156 |
1
⊢ ψ |