NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elintrab Unicode version

Theorem elintrab 3939
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.)
Hypothesis
Ref Expression
inteqab.1
Assertion
Ref Expression
elintrab
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem elintrab
StepHypRef Expression
1 inteqab.1 . . . 4
21elintab 3938 . . 3
3 impexp 433 . . . 4
43albii 1566 . . 3
52, 4bitri 240 . 2
6 df-rab 2624 . . . 4
76inteqi 3931 . . 3
87eleq2i 2417 . 2
9 df-ral 2620 . 2
105, 8, 93bitr4i 268 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wal 1540   wcel 1710  cab 2339  wral 2615  crab 2619  cvv 2860  cint 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rab 2624  df-v 2862  df-int 3928
This theorem is referenced by:  elintrabg  3940  intmin  3947
  Copyright terms: Public domain W3C validator