| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > elintrab | Unicode version | ||
| Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.) | 
| Ref | Expression | 
|---|---|
| inteqab.1 | 
 | 
| Ref | Expression | 
|---|---|
| elintrab | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inteqab.1 | 
. . . 4
 | |
| 2 | 1 | elintab 3938 | 
. . 3
 | 
| 3 | impexp 433 | 
. . . 4
 | |
| 4 | 3 | albii 1566 | 
. . 3
 | 
| 5 | 2, 4 | bitri 240 | 
. 2
 | 
| 6 | df-rab 2624 | 
. . . 4
 | |
| 7 | 6 | inteqi 3931 | 
. . 3
 | 
| 8 | 7 | eleq2i 2417 | 
. 2
 | 
| 9 | df-ral 2620 | 
. 2
 | |
| 10 | 5, 8, 9 | 3bitr4i 268 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rab 2624 df-v 2862 df-int 3928 | 
| This theorem is referenced by: elintrabg 3940 intmin 3947 | 
| Copyright terms: Public domain | W3C validator |