New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elintrab | GIF version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.) |
Ref | Expression |
---|---|
inteqab.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
elintrab | ⊢ (A ∈ ∩{x ∈ B ∣ φ} ↔ ∀x ∈ B (φ → A ∈ x)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqab.1 | . . . 4 ⊢ A ∈ V | |
2 | 1 | elintab 3938 | . . 3 ⊢ (A ∈ ∩{x ∣ (x ∈ B ∧ φ)} ↔ ∀x((x ∈ B ∧ φ) → A ∈ x)) |
3 | impexp 433 | . . . 4 ⊢ (((x ∈ B ∧ φ) → A ∈ x) ↔ (x ∈ B → (φ → A ∈ x))) | |
4 | 3 | albii 1566 | . . 3 ⊢ (∀x((x ∈ B ∧ φ) → A ∈ x) ↔ ∀x(x ∈ B → (φ → A ∈ x))) |
5 | 2, 4 | bitri 240 | . 2 ⊢ (A ∈ ∩{x ∣ (x ∈ B ∧ φ)} ↔ ∀x(x ∈ B → (φ → A ∈ x))) |
6 | df-rab 2624 | . . . 4 ⊢ {x ∈ B ∣ φ} = {x ∣ (x ∈ B ∧ φ)} | |
7 | 6 | inteqi 3931 | . . 3 ⊢ ∩{x ∈ B ∣ φ} = ∩{x ∣ (x ∈ B ∧ φ)} |
8 | 7 | eleq2i 2417 | . 2 ⊢ (A ∈ ∩{x ∈ B ∣ φ} ↔ A ∈ ∩{x ∣ (x ∈ B ∧ φ)}) |
9 | df-ral 2620 | . 2 ⊢ (∀x ∈ B (φ → A ∈ x) ↔ ∀x(x ∈ B → (φ → A ∈ x))) | |
10 | 5, 8, 9 | 3bitr4i 268 | 1 ⊢ (A ∈ ∩{x ∈ B ∣ φ} ↔ ∀x ∈ B (φ → A ∈ x)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 {cab 2339 ∀wral 2615 {crab 2619 Vcvv 2860 ∩cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rab 2624 df-v 2862 df-int 3928 |
This theorem is referenced by: elintrabg 3940 intmin 3947 |
Copyright terms: Public domain | W3C validator |