New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  elintab Unicode version

Theorem elintab 3937
 Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
inteqab.1
Assertion
Ref Expression
elintab
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem elintab
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 inteqab.1 . . 3
21elint 3932 . 2
3 nfsab1 2343 . . . 4
4 nfv 1619 . . . 4
53, 4nfim 1813 . . 3
6 nfv 1619 . . 3
7 eleq1 2413 . . . . 5
8 abid 2341 . . . . 5
97, 8syl6bb 252 . . . 4
10 eleq2 2414 . . . 4
119, 10imbi12d 311 . . 3
125, 6, 11cbval 1984 . 2
132, 12bitri 240 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 176  wal 1540   wceq 1642   wcel 1710  cab 2339  cvv 2859  cint 3926 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-int 3927 This theorem is referenced by:  elintrab  3938  intmin4  3955  intab  3956  peano1  4402  peano2  4403  ncvspfin  4538  spfinsfincl  4539  clos1conn  5879  nchoicelem10  6298
 Copyright terms: Public domain W3C validator