New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elpw1111c | Unicode version |
Description: Membership in 1 1 1 1 1 1 1 1 1 1 1 1c. (Contributed by SF, 24-Jan-2015.) |
Ref | Expression |
---|---|
elpw1111c | 1 1 1 1 1 1 1 1 1 1 1 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw1 4145 | . 2 1 1 1 1 1 1 1 1 1 1 1 1c 1 1 1 1 1 1 1 1 1 1 1c | |
2 | df-rex 2621 | . . . 4 1 1 1 1 1 1 1 1 1 1 1c 1 1 1 1 1 1 1 1 1 1 1c | |
3 | elpw1101c 4157 | . . . . . . 7 1 1 1 1 1 1 1 1 1 1 1c | |
4 | 3 | anbi1i 676 | . . . . . 6 1 1 1 1 1 1 1 1 1 1 1c |
5 | 19.41v 1901 | . . . . . 6 | |
6 | 4, 5 | bitr4i 243 | . . . . 5 1 1 1 1 1 1 1 1 1 1 1c |
7 | 6 | exbii 1582 | . . . 4 1 1 1 1 1 1 1 1 1 1 1c |
8 | 2, 7 | bitri 240 | . . 3 1 1 1 1 1 1 1 1 1 1 1c |
9 | excom 1741 | . . . 4 | |
10 | snex 4112 | . . . . . 6 | |
11 | sneq 3745 | . . . . . . 7 | |
12 | 11 | eqeq2d 2364 | . . . . . 6 |
13 | 10, 12 | ceqsexv 2895 | . . . . 5 |
14 | 13 | exbii 1582 | . . . 4 |
15 | 9, 14 | bitri 240 | . . 3 |
16 | 8, 15 | bitri 240 | . 2 1 1 1 1 1 1 1 1 1 1 1c |
17 | 1, 16 | bitri 240 | 1 1 1 1 1 1 1 1 1 1 1 1 1c |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 wrex 2616 csn 3738 1cc1c 4135 1 cpw1 4136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-1c 4137 df-pw1 4138 |
This theorem is referenced by: ltfinex 4465 |
Copyright terms: Public domain | W3C validator |