New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elunirab | Unicode version |
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
elunirab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluniab 3904 | . 2 | |
2 | df-rab 2624 | . . . 4 | |
3 | 2 | unieqi 3902 | . . 3 |
4 | 3 | eleq2i 2417 | . 2 |
5 | df-rex 2621 | . . 3 | |
6 | an12 772 | . . . 4 | |
7 | 6 | exbii 1582 | . . 3 |
8 | 5, 7 | bitri 240 | . 2 |
9 | 1, 4, 8 | 3bitr4i 268 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wex 1541 wcel 1710 cab 2339 wrex 2616 crab 2619 cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-rab 2624 df-v 2862 df-uni 3893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |