| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > elunirab | Unicode version | ||
| Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.) | 
| Ref | Expression | 
|---|---|
| elunirab | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluniab 3904 | 
. 2
 | |
| 2 | df-rab 2624 | 
. . . 4
 | |
| 3 | 2 | unieqi 3902 | 
. . 3
 | 
| 4 | 3 | eleq2i 2417 | 
. 2
 | 
| 5 | df-rex 2621 | 
. . 3
 | |
| 6 | an12 772 | 
. . . 4
 | |
| 7 | 6 | exbii 1582 | 
. . 3
 | 
| 8 | 5, 7 | bitri 240 | 
. 2
 | 
| 9 | 1, 4, 8 | 3bitr4i 268 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-rab 2624 df-v 2862 df-uni 3893 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |