New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elunirab | GIF version |
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
elunirab | ⊢ (A ∈ ∪{x ∈ B ∣ φ} ↔ ∃x ∈ B (A ∈ x ∧ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluniab 3904 | . 2 ⊢ (A ∈ ∪{x ∣ (x ∈ B ∧ φ)} ↔ ∃x(A ∈ x ∧ (x ∈ B ∧ φ))) | |
2 | df-rab 2624 | . . . 4 ⊢ {x ∈ B ∣ φ} = {x ∣ (x ∈ B ∧ φ)} | |
3 | 2 | unieqi 3902 | . . 3 ⊢ ∪{x ∈ B ∣ φ} = ∪{x ∣ (x ∈ B ∧ φ)} |
4 | 3 | eleq2i 2417 | . 2 ⊢ (A ∈ ∪{x ∈ B ∣ φ} ↔ A ∈ ∪{x ∣ (x ∈ B ∧ φ)}) |
5 | df-rex 2621 | . . 3 ⊢ (∃x ∈ B (A ∈ x ∧ φ) ↔ ∃x(x ∈ B ∧ (A ∈ x ∧ φ))) | |
6 | an12 772 | . . . 4 ⊢ ((x ∈ B ∧ (A ∈ x ∧ φ)) ↔ (A ∈ x ∧ (x ∈ B ∧ φ))) | |
7 | 6 | exbii 1582 | . . 3 ⊢ (∃x(x ∈ B ∧ (A ∈ x ∧ φ)) ↔ ∃x(A ∈ x ∧ (x ∈ B ∧ φ))) |
8 | 5, 7 | bitri 240 | . 2 ⊢ (∃x ∈ B (A ∈ x ∧ φ) ↔ ∃x(A ∈ x ∧ (x ∈ B ∧ φ))) |
9 | 1, 4, 8 | 3bitr4i 268 | 1 ⊢ (A ∈ ∪{x ∈ B ∣ φ} ↔ ∃x ∈ B (A ∈ x ∧ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 ∈ wcel 1710 {cab 2339 ∃wrex 2616 {crab 2619 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-rab 2624 df-v 2862 df-uni 3893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |