| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eluniab | Unicode version | ||
| Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| eluniab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 3895 |
. 2
| |
| 2 | nfv 1619 |
. . . 4
| |
| 3 | nfsab1 2343 |
. . . 4
| |
| 4 | 2, 3 | nfan 1824 |
. . 3
|
| 5 | nfv 1619 |
. . 3
| |
| 6 | eleq2 2414 |
. . . 4
| |
| 7 | eleq1 2413 |
. . . . 5
| |
| 8 | abid 2341 |
. . . . 5
| |
| 9 | 7, 8 | syl6bb 252 |
. . . 4
|
| 10 | 6, 9 | anbi12d 691 |
. . 3
|
| 11 | 4, 5, 10 | cbvex 1985 |
. 2
|
| 12 | 1, 11 | bitri 240 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-uni 3893 |
| This theorem is referenced by: elunirab 3905 dfiun2g 4000 eqtfinrelk 4487 elfv 5327 funiunfv 5468 tcfnex 6245 |
| Copyright terms: Public domain | W3C validator |