| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > unipr | Unicode version | ||
| Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| unipr.1 | 
 | 
| unipr.2 | 
 | 
| Ref | Expression | 
|---|---|
| unipr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2863 | 
. . . . . . . 8
 | |
| 2 | 1 | elpr 3752 | 
. . . . . . 7
 | 
| 3 | 2 | anbi2i 675 | 
. . . . . 6
 | 
| 4 | andi 837 | 
. . . . . 6
 | |
| 5 | 3, 4 | bitri 240 | 
. . . . 5
 | 
| 6 | 5 | exbii 1582 | 
. . . 4
 | 
| 7 | 19.43 1605 | 
. . . 4
 | |
| 8 | 6, 7 | bitri 240 | 
. . 3
 | 
| 9 | eluni 3895 | 
. . 3
 | |
| 10 | elun 3221 | 
. . . 4
 | |
| 11 | unipr.1 | 
. . . . . . 7
 | |
| 12 | 11 | clel3 2978 | 
. . . . . 6
 | 
| 13 | exancom 1586 | 
. . . . . 6
 | |
| 14 | 12, 13 | bitri 240 | 
. . . . 5
 | 
| 15 | unipr.2 | 
. . . . . . 7
 | |
| 16 | 15 | clel3 2978 | 
. . . . . 6
 | 
| 17 | exancom 1586 | 
. . . . . 6
 | |
| 18 | 16, 17 | bitri 240 | 
. . . . 5
 | 
| 19 | 14, 18 | orbi12i 507 | 
. . . 4
 | 
| 20 | 10, 19 | bitri 240 | 
. . 3
 | 
| 21 | 8, 9, 20 | 3bitr4i 268 | 
. 2
 | 
| 22 | 21 | eqriv 2350 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-uni 3893 | 
| This theorem is referenced by: uniprg 3907 unisn 3908 uniintsn 3964 | 
| Copyright terms: Public domain | W3C validator |