New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqreu | Unicode version |
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
eqreu.1 |
Ref | Expression |
---|---|
eqreu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiim 2752 | . . . . 5 | |
2 | eqreu.1 | . . . . . . 7 | |
3 | 2 | ceqsralv 2887 | . . . . . 6 |
4 | 3 | anbi2d 684 | . . . . 5 |
5 | 1, 4 | syl5bb 248 | . . . 4 |
6 | reu6i 3028 | . . . . 5 | |
7 | 6 | ex 423 | . . . 4 |
8 | 5, 7 | sylbird 226 | . . 3 |
9 | 8 | 3impib 1149 | . 2 |
10 | 9 | 3com23 1157 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 w3a 934 wceq 1642 wcel 1710 wral 2615 wreu 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-reu 2622 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |