New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  reu6i Unicode version

Theorem reu6i 3027
 Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
reu6i
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem reu6i
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2362 . . . . 5
21bibi2d 309 . . . 4
32ralbidv 2634 . . 3
43rspcev 2955 . 2
5 reu6 3025 . 2
64, 5sylibr 203 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 176   wa 358   wceq 1642   wcel 1710  wral 2614  wrex 2615  wreu 2616 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ral 2619  df-rex 2620  df-reu 2621  df-v 2861 This theorem is referenced by:  eqreu  3028
 Copyright terms: Public domain W3C validator