| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eqreu | GIF version | ||
| Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| eqreu.1 | ⊢ (x = B → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| eqreu | ⊢ ((B ∈ A ∧ ψ ∧ ∀x ∈ A (φ → x = B)) → ∃!x ∈ A φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbiim 2752 | . . . . 5 ⊢ (∀x ∈ A (φ ↔ x = B) ↔ (∀x ∈ A (φ → x = B) ∧ ∀x ∈ A (x = B → φ))) | |
| 2 | eqreu.1 | . . . . . . 7 ⊢ (x = B → (φ ↔ ψ)) | |
| 3 | 2 | ceqsralv 2887 | . . . . . 6 ⊢ (B ∈ A → (∀x ∈ A (x = B → φ) ↔ ψ)) |
| 4 | 3 | anbi2d 684 | . . . . 5 ⊢ (B ∈ A → ((∀x ∈ A (φ → x = B) ∧ ∀x ∈ A (x = B → φ)) ↔ (∀x ∈ A (φ → x = B) ∧ ψ))) |
| 5 | 1, 4 | syl5bb 248 | . . . 4 ⊢ (B ∈ A → (∀x ∈ A (φ ↔ x = B) ↔ (∀x ∈ A (φ → x = B) ∧ ψ))) |
| 6 | reu6i 3028 | . . . . 5 ⊢ ((B ∈ A ∧ ∀x ∈ A (φ ↔ x = B)) → ∃!x ∈ A φ) | |
| 7 | 6 | ex 423 | . . . 4 ⊢ (B ∈ A → (∀x ∈ A (φ ↔ x = B) → ∃!x ∈ A φ)) |
| 8 | 5, 7 | sylbird 226 | . . 3 ⊢ (B ∈ A → ((∀x ∈ A (φ → x = B) ∧ ψ) → ∃!x ∈ A φ)) |
| 9 | 8 | 3impib 1149 | . 2 ⊢ ((B ∈ A ∧ ∀x ∈ A (φ → x = B) ∧ ψ) → ∃!x ∈ A φ) |
| 10 | 9 | 3com23 1157 | 1 ⊢ ((B ∈ A ∧ ψ ∧ ∀x ∈ A (φ → x = B)) → ∃!x ∈ A φ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ∀wral 2615 ∃!wreu 2617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-reu 2622 df-v 2862 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |